scholarly journals Exosomes in the Tumor Microenvironment: From Biology to Clinical Applications

Cells ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 2617
Author(s):  
Vitor Rodrigues da Costa ◽  
Rodrigo Pinheiro Araldi ◽  
Hugo Vigerelli ◽  
Fernanda D’Ámelio ◽  
Thais Biude Mendes ◽  
...  

Cancer is one of the most important health problems and the second leading cause of death worldwide. Despite the advances in oncology, cancer heterogeneity remains challenging to therapeutics. This is because the exosome-mediated crosstalk between cancer and non-cancer cells within the tumor microenvironment (TME) contributes to the acquisition of all hallmarks of cancer and leads to the formation of cancer stem cells (CSCs), which exhibit resistance to a range of anticancer drugs. Thus, this review aims to summarize the role of TME-derived exosomes in cancer biology and explore the clinical potential of mesenchymal stem-cell-derived exosomes as a cancer treatment, discussing future prospects of cell-free therapy for cancer treatment and challenges to be overcome.

Author(s):  
Sourav Bhattacharjee

In this second Expert Perspective video with Sourav Bhattacharjee of the University College Dublin, Sourav discusses how nanomedicine is being used in clinical research, with particular emphasis on the role of nanomedicine and nanotechnology in cancer treatment.


2018 ◽  
Vol 19 (12) ◽  
pp. 3950 ◽  
Author(s):  
Marilina García-Aranda ◽  
Elisabet Pérez-Ruiz ◽  
Maximino Redondo

Abstract: According to the World Health Organization (WHO), cancer is a leading cause of death worldwide. The identification of novel targets for cancer treatment is an area of intense work that has led Bcl-2 over-expression to be proposed as one of the hallmarks of cancer and Bcl-2 inhibition as a promising strategy for cancer treatment. In this review, we describe the different pathways related to programmed cell death, the role of Bcl-2 family members in apoptosis resistance to anti-cancer treatments, and the potential utility of Bcl-2 inhibitors to overcome resistance to chemo- and immunotherapy.


2019 ◽  
Vol 17 (1) ◽  
Author(s):  
HuiSu Kim ◽  
Dong Wook Kim ◽  
Je-Yoel Cho

ABSTRACT There have been many attempts to fully understand the mechanism of cancer behavior. Yet, how cancers develop and metastasize still remain elusive. Emerging concepts of cancer biology in recent years have focused on the communication of cancer with its microenvironment, since cancer cannot grow and live alone. Cancer needs to communicate with other cells for survival, and thus they secrete various messengers, including exosomes that contain many proteins, miRNAs, mRNAs, etc., for construction of the tumor microenvironment. Moreover, these intercellular communications between cancer and its microenvironment, including stromal cells or distant cells, can promote tumor growth, metastasis, and escape from immune surveillance. In this review, we summarized the role of proteins in the exosome as communicators between cancer and its microenvironment. Consequently, we present cancer specific exosome proteins and their unique roles in the interaction between cancer and its microenvironment. Clinically, these exosomes might provide useful biomarkers for cancer diagnosis and therapeutic tools for cancer treatment.


2020 ◽  
Vol 35 (1_suppl) ◽  
pp. 8-11 ◽  
Author(s):  
Paola Nisticò ◽  
Gennaro Ciliberto

Our view of cancer biology radically shifted from a “cancer-cell-centric” vision to a view of cancer as an organ disease. The concept that genetic and/or epigenetic alterations, at the basis of cancerogenesis, are the main if not the exclusive drivers of cancer development and the principal targets of therapy, has now evolved to include the tumor microenvironment in which tumor cells can grow, proliferate, survive, and metastasize only within a favorable environment. The interplay between cancer cells and the non-cellular and cellular components of the tumor microenvironment plays a fundamental role in tumor development and evolution both at the primary site and at the level of metastasis. The shape of the tumor cells and tumor mass is the resultant of several contrasting forces either pro-tumoral or anti-tumoral which have at the level of the tumor microenvironment their battle field. This crucial role of tumor microenvironment composition in cancer progression also dictates whether immunotherapy with immune checkpoint inhibitor antibodies is going to be efficacious. Hence, tumor microenvironment deconvolution has become of great relevance in order to identify biomarkers predictive of efficacy of immunotherapy. In this short paper we will briefly review the relationship between inflammation and cancer, and will summarize in 10 short points the key concepts learned so far and the open challenges to be solved.


Cryobiology ◽  
2013 ◽  
Vol 66 (3) ◽  
pp. 346
Author(s):  
Robert J. Griffin ◽  
Gal Shafirstein ◽  
John Bischof ◽  
Klressa Barnes

Open Biology ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 200358
Author(s):  
Sasi S. Senga ◽  
Richard P. Grose

Diagnosis and treatment of disease demand a sound understanding of the underlying mechanisms, determining any Achilles' heel that can be targeted in effective therapies. Throughout history, this endeavour to decipher the origin and mechanism of transformation of a normal cell into cancer has led to various theories—from cancer as a curse to an understanding at the level of single-cell heterogeneity, meaning even among a single sub-type of cancer there are myriad molecular challenges to overcome. With increasing insight into cancer genetics and biology, the disease has become ever more complex to understand. The complexity of cancer as a disease was distilled into key traits by Hanahan and Weinberg in their seminal ‘Hallmarks of Cancer' reviews. This lucid conceptualization of complex cancer biology is widely accepted and has helped advance cancer therapeutics by targeting the various hallmarks but, with the advancement in technologies, there is greater granularity in how we view cancer as a disease, and the additional understanding over the past decade requires us to revisit the hallmarks of cancer. Based on extensive study of the cancer research literature, we propose four novel hallmarks of cancer, namely, the ability of cells to regress from a specific specialized functional state, epigenetic changes that can affect gene expression, the role of microorganisms and neuronal signalling, to be included in the hallmark conceptualization along with evidence of various means to exploit them therapeutically.


Blood ◽  
1994 ◽  
Vol 84 (10) ◽  
pp. 3261-3282 ◽  
Author(s):  
EC Guinan ◽  
JG Gribben ◽  
VA Boussiotis ◽  
GJ Freeman ◽  
LM Nadler

The above story illustrates the translation of basic scientific discoveries to the clinic. In vitro and preclinical in vivo experimentation suggests that modulation of the B7:CD28 pathway will result in either amplification or suppression of the immune response. Considering the frequency with which diseases characterized by either inadequate or dysregulated immune function present to the practicing hematologist or oncologist, it is not difficult to envisage clinical applications for reagents that modulate this pathway. However, we still have much to learn about the function and clinical potential of this and other potentially redundant costimulatory pathways and therefore we suspect that this story will become considerably more complex over the next few years.


Cancers ◽  
2019 ◽  
Vol 11 (2) ◽  
pp. 240 ◽  
Author(s):  
Phung Huong ◽  
Lap Nguyen ◽  
Xuan-Bac Nguyen ◽  
Sang Lee ◽  
Duc-Hiep Bach

Besides the critical functions in hemostasis, thrombosis and the wounding process, platelets have been increasingly identified as active players in various processes in tumorigenesis, including angiogenesis and metastasis. Once activated, platelets can release bioactive contents such as lipids, microRNAs, and growth factors into the bloodstream, subsequently enhancing the platelet–cancer interaction and stimulating cancer metastasis and angiogenesis. The mechanisms of treatment failure of chemotherapeutic drugs have been investigated to be associated with platelets. Therefore, understanding how platelets contribute to the tumor microenvironment may potentially identify strategies to suppress cancer angiogenesis, metastasis, and drug resistance. Herein, we present a review of recent investigations on the role of platelets in the tumor-microenvironment including angiogenesis, and metastasis, as well as targeting platelets for cancer treatment, especially in drug resistance.


Sign in / Sign up

Export Citation Format

Share Document