Estimation of thermal comfort felt by human exposed to extreme heat wave in a complex urban area using a WRF-MENEX model

2019 ◽  
Vol 63 (7) ◽  
pp. 927-938 ◽  
Author(s):  
M.-K. Hwang ◽  
J.-H. Bang ◽  
S. Kim ◽  
Y.-K. Kim ◽  
I. Oh
2018 ◽  
Vol 2018 (1) ◽  
Author(s):  
Mi-Kyoung Hwang ◽  
Inbo Oh ◽  
Jin-Hee Bang ◽  
Sungmin Kim ◽  
Yoo-Keun Kim
Keyword(s):  

2016 ◽  
Vol 22 ◽  
pp. 164-170 ◽  
Author(s):  
Lingjun Zhao ◽  
Xiaoqing Zhou ◽  
Li Li ◽  
Shiquan He ◽  
Raochao Chen

Circulation ◽  
2017 ◽  
Vol 135 (suppl_1) ◽  
Author(s):  
Yi Wang

Background: The association between heat and hospital admissions is well studied, but in Indiana where the regulatory agencies cites lack of evidence for global climate change, local evidence of such an association is critical for Indiana to mitigate the impact of increasing heat. Methods: Using a distributed-lag non-linear model, we studied the effects of moderate (31.7 °C or 90 th percentile of daily mean apparent temperature (AT)), severe (33.5 °C or 95 th percentile of daily mean apparent temperature (AT)) and extreme (36.4 °C or 99 th percentile of AT) heat on hospital admissions (June-August 2007-2012) for cardiovascular (myocardial infarction, myocardial infarction, heart failure) and heat-related diseases in Indianapolis, Indiana located in Marion County. We also examined the added effects of moderate heat waves (AT above the 90 th percentile lasting 2-6 days), severe heat waves (AT above the 95 th percentile lasting 2-6 days) and extreme heat waves (AT above the 99 th percentile lasting 2-6 days). In sensitivity analysis, we tested robustness of our results to 1) different temperature and lag structures and 2) temperature metrics (daily min, max and diurnal temperature range). Results: The relative risks of moderate heat, relative to 29.2°C (75 th percentile of AT), on admissions for cardiovascular disease (CVD), myocardial infarction (MI), heart failure (HF), and heat-related diseases (HD) were 0.98 (0.67, 1.44), 6.28 (1.48, 26.6), 1.38 (0.81, 2.36) and 1.73 (0.58, 5.11). The relative risk of severe heat on admissions for CVD, MI, HF, and HD were 0.93 (0.60, 1.43), 4.46 (0.85, 23.4), 1.30 (0.72, 2.34) and 2.14 (0.43, 10.7). The relative risk of extreme heat were 0.79 (0.26, 2.39), 0.11 (0.087, 1.32), 0.68 (0.18, 2.61), and 0.32 (0.005, 19.5). We also observed statistically significant added effects of moderate heat waves lasting 4 or 6 days on hospital admission for MI and HD and extreme heat waves lasting 4 days on hospital admissions for HD. Results were strengthened for people older than 65. Conclusions: Moderate heat wave lasting 4-6 days were associated with increased hospital admissions for MI and HD diseases and extreme heat wave lasting 4 days were associated with increased admissions for HD.


2021 ◽  
Vol 25 (2) ◽  
pp. 85-101
Author(s):  
Try Ramadhan ◽  
Aldissain Jurizat ◽  
Andina Syafrina ◽  
Amat Rahmat

Campus building was a place to accommodate various educational activities, which were both carried out indoors and outdoors. The environment, including the building and its exterior, provided thermal comfort that was influenced by the context, such as the mass of the facility, vegetation, and constructing envelope materials. The microclimate also influenced the environment, such as temperature, wind speed, and humidity. This study aimed to investigate the outdoor thermal comfort of campus building in urban area during summer, while also identifying the influential factors. This research referred to a case study, examining the thermal quality of the educational building environment using ENVI-met software, based on the Predicted Mean Vote (PMV) index as an indicator of outdoor thermal comfort, in Universitas Kebangsaan (UK). The results showed that the outdoor environment had low thermal comfort conditions during the day, as it also had different thermal satisfactory situations, due to differences in physical characteristics in each zone. This characteristics included, (1) The SVF determinant as indicators of the shading factor should be supported by the presence of vegetation and the use of pavement material, (2) Although the wind speed factor does not really affect the thermal comfort in the outdoor space, the interconnection between open gaps is likely to make breeze distribution in the area better. This study offered direction for campus planning, in order to maintain the optimal capacity of the natural environment, such as (1) Strategizing to create a better shadowing factor in the outer space, which was supported by controlling the use of pavement materials, (2) Directing the density of buildings by making open spaces more permeable, in order for better wind distribution in the area. From this study, the campus current conditions and future design development potential was also observed.


2021 ◽  

Extreme heat events (EHEs) are periods of high temperatures and humidity that are considered to be unusual for a specific geographic location. For example, in 1995 an extended heat wave in Chicago, Illinois, in the United States was blamed for the deaths of 550 citizens. Most of the dead were elderly, poor individuals who may not have realized that heat could kill, or who had no means of mitigating the rising temperatures in their homes or any way to escape to a cooler environment. In 2003, Europe was subjected to an EHE that is estimated to have resulted in the deaths of 70,000, with 15,000 of those deaths in Paris, France. “Extreme heat” is a relative term. Individuals adapt to their local climate, so it is difficult to use an absolute number to describe the conditions meteorologists consider a relative change from past conditions. The Centers for Disease Control and Prevention (CDC) defines extreme heat as “summertime temperatures that are substantially hotter and/or more humid than average for location at that time of year.” According to the Public Health Institute’s Center for Climate Change, the state of California defines extreme heat days as those days above the 98th percentile of maximum temperatures based on 1961–1990 data for a specific location. Crucial to understanding extreme heat events is the collection of data about temperature and humidity. The US Global Change Research Program provides heat wave data spanning 1961 to 2018. The site links to a variety of programs related to global climate modeling. The National Resources Defense Council is a nongovernmental organization that has excellent maps which show change over time in the frequency of extreme heat events that overlay the human impact of these events. The National Centers for Environmental Information provides graphic data of current weather conditions along with lists of significant climate anomalies. The site has links to weather records and tools. All of these sites rely on the National Oceanic and Atmospheric Administration for their data. There are equivalent agencies all over the world. The World Meteorological Organization, part of the United Nations, is also a valuable resource for data.


Author(s):  
Günay Can ◽  
Ümit Şahin ◽  
Uğurcan Sayılı ◽  
Marjolaine Dubé ◽  
Beril Kara ◽  
...  

Heat waves are one of the most common direct impacts of anthropogenic climate change and excess mortality their most apparent impact. While Turkey has experienced an increase in heat wave episodes between 1971 and 2016, no epidemiological studies have examined their potential impacts on public health so far. In this study excess mortality in Istanbul attributable to extreme heat wave episodes between 2013 and 2017 is presented. Total excess deaths were calculated using mortality rates across different categories, including age, sex, and cause of death. The analysis shows that three extreme heat waves in the summer months of 2015, 2016, and 2017, which covered 14 days in total, significantly increased the mortality rate and caused 419 excess deaths in 23 days of exposure. As climate simulations show that Turkey is one of the most vulnerable countries in the Europe region to the increased intensity of heat waves until the end of the 21st century, further studies about increased mortality and morbidity risks due to heat waves in Istanbul and other cities, as well as intervention studies, are necessary.


2017 ◽  
Vol 79 ◽  
pp. 50-72 ◽  
Author(s):  
Kenobi Isima Morris ◽  
Andy Chan ◽  
Kwami Justina Kwami Morris ◽  
Maggie C.G. Ooi ◽  
Muhammad Y. Oozeer ◽  
...  

2013 ◽  
Vol 723 ◽  
pp. 617-622
Author(s):  
Er Hu Yan ◽  
Fu Pu Li ◽  
Rong Ma ◽  
Fei Chen

Climate change is one of the most key global topics well-known in international community. Over the past decades years, the change climate and its impact on asphalt pavement in China is very obvious. Many expressways of asphalt pavement come forth severe rutting failure during only a few days of extensive, long-lasting, extreme heat wave in summer, which resulting in the change of asphalt cement specification and the selection practice of asphalt cement. So it is necessary to review climate change and its impact in the past, and forecast the probable situation in the future. The paper focuses specifically on the issue of asphalt binder selection under changing climatic conditions.


Sign in / Sign up

Export Citation Format

Share Document