scholarly journals An advanced empirical model for quantifying the impact of heat and climate change on human physical work capacity

Author(s):  
Josh Foster ◽  
James W. Smallcombe ◽  
Simon Hodder ◽  
Ollie Jay ◽  
Andreas D. Flouris ◽  
...  

AbstractOccupational heat stress directly hampers physical work capacity (PWC), with large economic consequences for industries and regions vulnerable to global warming. Accurately quantifying PWC is essential for forecasting impacts of different climate change scenarios, but the current state of knowledge is limited, leading to potential underestimations in mild heat, and overestimations in extreme heat. We therefore developed advanced empirical equations for PWC based on 338 work sessions in climatic chambers (low air movement, no solar radiation) spanning mild to extreme heat stress. Equations for PWC are available based on air temperature and humidity, for a suite of heat stress assessment metrics, and mean skin temperature. Our models are highly sensitive to mild heat and to our knowledge are the first to include empirical data across the full range of warm and hot environments possible with future climate change across the world. Using wet bulb globe temperature (WBGT) as an example, we noted 10% reductions in PWC at mild heat stress (WBGT = 18°C) and reductions of 78% in the most extreme conditions (WBGT = 40°C). Of the different heat stress indices available, the heat index was the best predictor of group level PWC (R2 = 0.96) but can only be applied in shaded conditions. The skin temperature, but not internal/core temperature, was a strong predictor of PWC (R2 = 0.88), thermal sensation (R2 = 0.84), and thermal comfort (R2 = 0.73). The models presented apply to occupational workloads and can be used in climate projection models to predict economic and social consequences of climate change.

2020 ◽  
Vol 11 ◽  
Author(s):  
Josh Foster ◽  
Simon G. Hodder ◽  
Alex B. Lloyd ◽  
George Havenith

2019 ◽  
Vol 51 (Supplement) ◽  
pp. 15
Author(s):  
James W. Smallcombe ◽  
Josh Foster ◽  
Simon Hodder ◽  
Ollie Jay ◽  
Andreas D. Flouris ◽  
...  

Author(s):  
Josh Foster ◽  
James W. Smallcombe ◽  
Simon Hodder ◽  
Ollie Jay ◽  
Andreas D. Flouris ◽  
...  

AbstractHeat stress decreases human physical work capacity (PWC), but the extent to which solar radiation (SOLAR) compounds this response is not well understood. This study empirically quantified how SOLAR impacts PWC in the heat, considering wide, but controlled, variations in air temperature, humidity, and clothing coverage. We also provide correction equations so PWC can be quantified outdoors using heat stress indices that do not ordinarily account for SOLAR (including the Heat Stress Index, Humidex, and Wet-Bulb Temperature). Fourteen young adult males (7 donning a work coverall, 7 with shorts and trainers) walked for 1 h at a fixed heart rate of 130 beats∙min−1, in seven combinations of air temperature (25 to 45°C) and relative humidity (20 or 80%), with and without SOLAR (800 W/m2 from solar lamps). Cumulative energy expenditure in the heat, relative to the work achieved in a cool reference condition, was used to determine PWC%. Skin temperature was the primary determinant of PWC in the heat. In dry climates with exposed skin (0.3 Clo), SOLAR caused PWC to decrease exponentially with rising air temperature, whereas work coveralls (0.9 Clo) negated this effect. In humid conditions, the SOLAR-induced reduction in PWC was consistent and linear across all levels of air temperature and clothing conditions. Wet-Bulb Globe Temperature and the Universal Thermal Climate Index represented SOLAR correctly and did not require a correction factor. For the Heat Stress Index, Humidex, and Wet-Bulb Temperature, correction factors are provided enabling forecasting of heat effects on work productivity.


2019 ◽  
Vol 76 (Suppl 1) ◽  
pp. A73.1-A73
Author(s):  
Ashley Akerman ◽  
Jim Cotter ◽  
Tord Kjellstrom

Recent global analysis of current and future ambient heat conditions has shown that occupational heat exposure in Pacific countries, measured or projected as WBGT, is among the most extreme in the world. Many Pacific countries face a serious and unprecedented collision of adverse environmental, sociocultural/demographic and chronic health factors. Environmentally, high temperatures and humidity exist several months each year, reducing physical work capacity. Conservative assessments reveal annual loss of healthy work hours for a person working at 400 W metabolic rate in countries like Papua New Guinea, Kiribati, Nauru and Guam increasing from 2%–3% to 9%–18% by 2100, based on the RCP6.0 pathway for climate change. Socio-culturally, such countries have low average income levels and high reliance on primary industries, so occupational and domestic exposure to ambient heat is chronic and somewhat intractable. Health wise, such countries have among the highest burden of chronic cardiometabolic disease in the world. Diabetes is already prevalent (20%–35%), as is hypertension. Casual links between heat exposure and cardiovascular health problems is strengthening and these health problems are becoming a major threat to health in Pacific countries. A diet that is increasingly more divergent from traditional foods is one key factor, but increasing heat conditions will contribute, particularly for people working in physically intensive occupations. Obesity is also prevalent, which is relevant because it adds to heat production while concurrently reducing heat loss, thereby impairing work capacity and tolerance of humid heat. Collectively these factors compromise thermal tolerance, reduce functional capacity and contribute to cardiometabolic disease. This paper will analyse the physiological base for the heat effects on cardiovascular disease with particular reference to occupational heat exposure, and estimate the impacts of climate change in the Pacific countries as well as identify solutions to reduce the future impacts.


2020 ◽  
Vol 9 (1) ◽  
Author(s):  
Nabaz R. Khwarahm

Abstract Background The oak tree (Quercus aegilops) comprises ~ 70% of the oak forests in the Kurdistan Region of Iraq (KRI). Besides its ecological importance as the residence for various endemic and migratory species, Q. aegilops forest also has socio-economic values—for example, as fodder for livestock, building material, medicine, charcoal, and firewood. In the KRI, Q. aegilops has been degrading due to anthropogenic threats (e.g., shifting cultivation, land use/land cover changes, civil war, and inadequate forest management policy) and these threats could increase as climate changes. In the KRI and Iraq as a whole, information on current and potential future geographical distributions of Q. aegilops is minimal or not existent. The objectives of this study were to (i) predict the current and future habitat suitability distributions of the species in relation to environmental variables and future climate change scenarios (Representative Concentration Pathway (RCP) 2.6 2070 and RCP8.5 2070); and (ii) determine the most important environmental variables controlling the distribution of the species in the KRI. The objectives were achieved by using the MaxEnt (maximum entropy) algorithm, available records of Q. aegilops, and environmental variables. Results The model demonstrated that, under the RCP2.6 2070 and RCP8.5 2070 climate change scenarios, the distribution ranges of Q. aegilops would be reduced by 3.6% (1849.7 km2) and 3.16% (1627.1 km2), respectively. By contrast, the species ranges would expand by 1.5% (777.0 km2) and 1.7% (848.0 km2), respectively. The distribution of the species was mainly controlled by annual precipitation. Under future climate change scenarios, the centroid of the distribution would shift toward higher altitudes. Conclusions The results suggest (i) a significant suitable habitat range of the species will be lost in the KRI due to climate change by 2070 and (ii) the preference of the species for cooler areas (high altitude) with high annual precipitation. Conservation actions should focus on the mountainous areas (e.g., by establishment of national parks and protected areas) of the KRI as climate changes. These findings provide useful benchmarking guidance for the future investigation of the ecology of the oak forest, and the categorical current and potential habitat suitability maps can effectively be used to improve biodiversity conservation plans and management actions in the KRI and Iraq as a whole.


Water ◽  
2021 ◽  
Vol 13 (15) ◽  
pp. 2101
Author(s):  
Christian Charron ◽  
André St-Hilaire ◽  
Taha B.M.J. Ouarda ◽  
Michael R. van den Heuvel

Simulation of surface water flow and temperature under a non-stationary, anthropogenically impacted climate is critical for water resource decision makers, especially in the context of environmental flow determination. Two climate change scenarios were employed to predict streamflow and temperature: RCP 8.5, the most pessimistic with regards to climate change, and RCP 4.5, a more optimistic scenario where greenhouse gas emissions peak in 2040. Two periods, 2018–2050 and 2051–2100, were also evaluated. In Canada, a number of modelling studies have shown that many regions will likely be faced with higher winter flow and lower summer flows. The CEQUEAU hydrological and water temperature model was calibrated and validated for the Wilmot River, Canada, using historic data for flow and temperature. Total annual precipitation in the region was found to remain stable under RCP 4.5 and increase over time under RCP 8.5. Median stream flow was expected to increase over present levels in the low flow months of August and September. However, increased climate variability led to higher numbers of periodic extreme low flow events and little change to the frequency of extreme high flow events. The effective increase in water temperature was four-fold greater in winter with an approximate mean difference of 4 °C, while the change was only 1 °C in summer. Overall implications for native coldwater fishes and water abstraction are not severe, except for the potential for more variability, and hence periodic extreme low flow/high temperature events.


2020 ◽  
Vol 13 (1) ◽  
pp. 27
Author(s):  
Hatem Mahmoud ◽  
Ayman Ragab

The density of building blocks and insufficient greenery in cities tend to contribute dramatically not only to increased heat stress in the built environment but also to higher energy demand for cooling. Urban planners should, therefore, be conscious of their responsibility to reduce energy usage of buildings along with improving outdoor thermal efficiency. This study examines the impact of numerous proposed urban geometry cases on the thermal efficiency of outer spaces as well as the energy consumption of adjacent buildings under various climate change scenarios as representative concentration pathways (RCP) 4.5 and 8.5 climate projections for New Aswan city in 2035. The investigation was performed at one of the most underutilized outdoor spaces on the new campus of Aswan University in New Aswan city. The potential reduction of heat stress was investigated so as to improve the thermal comfort of the investigated outdoor spaces, as well as energy savings based on the proposed strategies. Accordingly, the most appropriate scenario to be adopted to cope with the inevitable climate change was identified. The proposed scenarios were divided into four categories of parameters. In the first category, shelters partially (25–50% and 75%) covering the streets were used. The second category proposed dividing the space parallel or perpendicular to the existing buildings. The third category was a hybrid scenario of the first and second categories. In the fourth category, a green cover of grass was added. A coupling evaluation was applied utilizing ENVI-met v4.2 and Design-Builder v4.5 to measure and improve the thermal efficiency of the outdoor space and reduce the cooling energy. The results demonstrated that it is better to cover outdoor spaces with 50% of the overall area than transform outdoor spaces into canyons.


Sign in / Sign up

Export Citation Format

Share Document