A new hybrid data-driven model for event-based rainfall–runoff simulation

2016 ◽  
Vol 28 (9) ◽  
pp. 2519-2534 ◽  
Author(s):  
Guangyuan Kan ◽  
Jiren Li ◽  
Xingnan Zhang ◽  
Liuqian Ding ◽  
Xiaoyan He ◽  
...  
Author(s):  
Guangyuan Kan ◽  
Xiaoyan He ◽  
Liuqian Ding ◽  
Jiren Li ◽  
Tianjie Lei ◽  
...  

Author(s):  
A. R. Nemati ◽  
M. Zakeri Niri ◽  
S. Moazami

Simulation of rainfall-runoff process is one of the most important research fields in hydrology and water resources. Generally, the models used in this section are divided into two conceptual and data-driven categories. In this study, a conceptual model and two data-driven models have been used to simulate rainfall-runoff process in Tamer sub-catchment located in Gorganroud watershed in Iran. The conceptual model used is HEC-HMS, and data-driven models are neural network model of multi-layer Perceptron (MLP) and support vector regression (SVR). In addition to simulation of rainfall-runoff process using the recorded land precipitation, the performance of four satellite algorithms of precipitation, that is, CMORPH, PERSIANN, TRMM 3B42 and TRMM 3B42RT were studied. In simulation of rainfall-runoff process, calibration and accuracy of the models were done based on satellite data. The results of the research based on three criteria of correlation coefficient (R), root mean square error (RMSE) and mean absolute error (MAE) showed that in this part the two models of SVR and MLP could perform the simulation of runoff in a relatively appropriate way, but in simulation of the maximum values of the flow, the error of models increased.


Water ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 191
Author(s):  
Shen Chiang ◽  
Chih-Hsin Chang ◽  
Wei-Bo Chen

To better understand the effect and constraint of different data lengths on the data-driven model training for the rainfall-runoff simulation, the support vector regression (SVR) approach was applied to the data-driven model as the core algorithm in the present study. Various features selection strategies and different data lengths were employed in the training phase of the model. The validated results of the SVR were compared with the rainfall-runoff simulation derived from a physically based hydrologic model, the Hydrologic Modeling System (HEC-HMS). The HEC-HMS was considered a conventional approach and was also calibrated with a dataset period identical to the SVR. Our results showed that the SVR and HEC-HMS models could be adopted for short and long periods of rainfall-runoff simulation. However, the SVR model estimated the rainfall-runoff relationship reasonably well even if the observational data of one year or one typhoon event was used. In contrast, the HEC-HMS model needed more parameter optimization and inference processes to achieve the same performance level as the SVR model. Overall, the SVR model was superior to the HEC-HMS model in the performance of the rainfall-runoff simulation.


2021 ◽  
Vol 13 (23) ◽  
pp. 13384
Author(s):  
Majid Mirzaei ◽  
Haoxuan Yu ◽  
Adnan Dehghani ◽  
Hadi Galavi ◽  
Vahid Shokri ◽  
...  

Rainfall-Runoff simulation is the backbone of all hydrological and climate change studies. This study proposes a novel stochastic model for daily rainfall-runoff simulation called Stacked Long Short-Term Memory (SLSTM) relying on machine learning technology. The SLSTM model utilizes only the rainfall-runoff data in its modelling approach and the hydrology system is deemed a blackbox. Conversely, the distributed and physically-based hydrological models, e.g., SWAT (Soil and Water Assessment Tool) preserve the physical aspect of hydrological variables and their inter-relations while taking a wide range of data. The two model types provide specific applications that interest modelers, who can apply them according to their project specification and objectives. However, sparse distribution of point-data may hinder physical models’ performance, which may not be the case in data-driven models. This study proposes a specific SLSTM model and investigates the SLSTM and SWAT models’ data dependency in terms of their spatial distribution. The study was conducted in the two distinct river basins of Samarahan and Trusan, Malaysia, with over 20 years of hydro-climate data. The Trusan basin’s rain gauges are scattered downstream of the basin outlet and Samarahan’s are located around the basin, with one station within each basin’s limits. The SWAT was developed and calibrated following its general modelling approach, however, the SLSTM performance was also tested using data preprocessing with principal component analysis (PCA). Results showed that the SWAT performance for daily streamflow simulation at Samarahan has been superior to that of Trusan. Both the SLSTM and PCA-SLSTM models, however, showed better performance at Trusan with PCA-SLSTM outperforming the SLSTM. This demonstrates that the SWAT model is greatly affected by the spatial distribution of its input data, while data-driven models, irrespective of the spatial distribution of their entry data, can perform well if the data adequacy condition is met. However, considering the structural difference between the two models, each has its specific application in a water resources context. The study of catchments’ response to changes in the hydrology cycle requires a physically-based model like SWAT with proper spatial and temporal distribution of its entry data. However, the study of a specific phenomenon without considering the underlying processes can be done using data-driven models like SLSTM, where improper spatial distribution of data cannot be a restricting factor.


2021 ◽  
Author(s):  
Thomas Lees ◽  
Marcus Buechel ◽  
Bailey Anderson ◽  
Louise Slater ◽  
Steven Reece ◽  
...  

<p>Techniques from the field of machine learning have shown considerable promise in rainfall-runoff modelling. This research offers three novel contributions to the advancement of this field: a study of the performance of LSTM based models in a GB hydrological context; a diagnosis of hydrological processes that data-driven models simulate well but conceptual models struggle with; and finally an exploration of methods for interpreting the internal cell states of the LSTMs. </p><p>In this study we train two deep learning models, a Long Short Term Memory (LSTM) Network and an Entity Aware LSTM (EALSTM), to simulate discharge for 518 catchments across Great Britain using a newly published dataset, CAMELS-GB. We demonstrate that the LSTM models are capable of simulating discharge for a large sample of catchments across Great Britain, achieving a mean catchment Nash-Sutcliffe Efficiency (NSE) of 0.88 for the LSTM and 0.86 for the EALSTM, where no stations have an NSE < 0. We compare these models against a series of conceptual models which have been externally calibrated and used as a benchmark (Lane et al., 2019). </p><p>Alongside robust performance for simulating discharge, we note the potential for data-driven methods to identify hydrological processes that are present in the underlying data, but the FUSE conceptual models are unable to capture. Therefore, we calculate the relative improvement of the LSTMs compared to the conceptual models, ∆NSE. We find that the largest improvement of the LSTM models compared to our benchmark is in the summer months and in the South East of Great Britain. </p><p>We also demonstrate that the internal “memory” of the LSTM correlates with soil moisture, despite the LSTM not receiving soil moisture as an input. This process of “concept-formation” offers three interesting findings. It provides a novel method for deriving soil moisture estimates. It suggests the LSTM is learning physically realistic representations of hydrological processes. Finally, this process of concept formation offers the potential to explore how the LSTM is able to produce accurate simulations of discharge, and the transformations that are learned from inputs (temperature, precipitation) to outputs (discharge).</p><p>References:<br>Lane, R. A., Coxon, G., Freer, J. E., Wagener, T., Johnes, P. J., Bloomfield, J. P., Greene, S., Macleod, C. J., and Reaney, S. M.: Benchmarking the predictive capability of hydrological models for river flow and flood peak predictions across over 1000 catchments in Great Britain, Hydrology and Earth System Sciences, 23, 4011–4032, 2019.</p>


10.29007/d2g9 ◽  
2018 ◽  
Author(s):  
Enrico Creaco ◽  
Sara Todeschini ◽  
Marco Franchini

This paper presents results about the hydrological modelling of the Cascina Scala catchment. Following a preliminary analysis that proved the Nash cascade of reservoirs superior to the Clark model in the event-based rainfall-runoff simulation for this catchment, a new analysis was carried out to compare two different parameterization approaches applicable in gauged rain events. The former is based on estimating the optimal set of model parameters in each gauged event and then obtaining the ultimate set by averaging the values obtained over the whole group of events; the latter is based on estimating the optimal set of parameters directly on the whole group of gauged events. The results of the analysis proved the better performance of the latter, which enables better representation of the hydrological response of the catchment, evaluated in terms of water discharge pattern at the outlet.


1998 ◽  
Vol 37 (11) ◽  
pp. 155-162 ◽  
Author(s):  
B. Maul-Kötter ◽  
Th. Einfalt

Continuous raingauge measurements are an important input variable for detailed rainfall-runoff simulation. In North Rhine-Westphalia, more than 150 continuous raingauges are used for local hydrological design through the use of site specific rainfall runoff models. Requiring gap-free data, the State Environmental Agency developed methods to use a combination of daily measurements and neighbouring continuous measurements for filling periods of lacking data in a given raindata series. The objective of such a method is to obtain plausible data for water balance simulations. For more than 3500 station years the described methodology has been applied.


Sign in / Sign up

Export Citation Format

Share Document