scholarly journals ASSESSMENT OF RAINFALL-RUNOFF SIMULATION MODEL BASED ON SATELLITE ALGORITHM

Author(s):  
A. R. Nemati ◽  
M. Zakeri Niri ◽  
S. Moazami

Simulation of rainfall-runoff process is one of the most important research fields in hydrology and water resources. Generally, the models used in this section are divided into two conceptual and data-driven categories. In this study, a conceptual model and two data-driven models have been used to simulate rainfall-runoff process in Tamer sub-catchment located in Gorganroud watershed in Iran. The conceptual model used is HEC-HMS, and data-driven models are neural network model of multi-layer Perceptron (MLP) and support vector regression (SVR). In addition to simulation of rainfall-runoff process using the recorded land precipitation, the performance of four satellite algorithms of precipitation, that is, CMORPH, PERSIANN, TRMM 3B42 and TRMM 3B42RT were studied. In simulation of rainfall-runoff process, calibration and accuracy of the models were done based on satellite data. The results of the research based on three criteria of correlation coefficient (R), root mean square error (RMSE) and mean absolute error (MAE) showed that in this part the two models of SVR and MLP could perform the simulation of runoff in a relatively appropriate way, but in simulation of the maximum values of the flow, the error of models increased.

Water ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 191
Author(s):  
Shen Chiang ◽  
Chih-Hsin Chang ◽  
Wei-Bo Chen

To better understand the effect and constraint of different data lengths on the data-driven model training for the rainfall-runoff simulation, the support vector regression (SVR) approach was applied to the data-driven model as the core algorithm in the present study. Various features selection strategies and different data lengths were employed in the training phase of the model. The validated results of the SVR were compared with the rainfall-runoff simulation derived from a physically based hydrologic model, the Hydrologic Modeling System (HEC-HMS). The HEC-HMS was considered a conventional approach and was also calibrated with a dataset period identical to the SVR. Our results showed that the SVR and HEC-HMS models could be adopted for short and long periods of rainfall-runoff simulation. However, the SVR model estimated the rainfall-runoff relationship reasonably well even if the observational data of one year or one typhoon event was used. In contrast, the HEC-HMS model needed more parameter optimization and inference processes to achieve the same performance level as the SVR model. Overall, the SVR model was superior to the HEC-HMS model in the performance of the rainfall-runoff simulation.


2020 ◽  
Vol 12 (7) ◽  
pp. 2749 ◽  
Author(s):  
Bojia Ye ◽  
Bo Liu ◽  
Yong Tian ◽  
Lili Wan

This paper proposes a new methodology for predicting aggregate flight departure delays in airports by exploring supervised learning methods. Individual flight data and meteorological information were processed to obtain four types of airport-related aggregate characteristics for prediction modeling. The expected departure delays in airports is selected as the prediction target while four popular supervised learning methods: multiple linear regression, a support vector machine, extremely randomized trees and LightGBM are investigated to improve the predictability and accuracy of the model. The proposed model is trained and validated using operational data from March 2017 to February 2018 for the Nanjing Lukou International Airport in China. The results show that for a 1-h forecast horizon, the LightGBM model provides the best result, giving a 0.8655 accuracy rate with a 6.65 min mean absolute error, which is 1.83 min less than results from previous research. The importance of aggregate characteristics and example validation are also studied.


2015 ◽  
Vol 76 (13) ◽  
Author(s):  
Siraj Muhammed Pandhiani ◽  
Ani Shabri

In this study, new hybrid model is developed by integrating two models, the discrete wavelet transform and least square support vector machine (WLSSVM) model. The hybrid model is then used to measure for monthly stream flow forecasting for two major rivers in Pakistan. The monthly stream flow forecasting results are obtained by applying this model individually to forecast the rivers flow data of the Indus River and Neelum Rivers. The root mean square error (RMSE), mean absolute error (MAE) and the correlation (R) statistics are used for evaluating the accuracy of the WLSSVM, the proposed model. The results are compared with the results obtained through LSSVM. The outcome of such comparison shows that WLSSVM model is more accurate and efficient than LSSVM.


Seismic tremors everywhere throughout the globe have been a noteworthy reason for decimation and death toll and property. The following context expects to recognize earthquakes at a beginning time utilizing AI. This will help individuals and salvage groups to make their errand simpler. The information in this manner comprises of these seismic acoustic signals and the time of failure. The model is then prepared utilizing the CatBoost model and the utilization of Support Vector Machines. This will help foresee the time at which a Seismic tremor may happen. CatBoost Regression Algorithm gives a Mean Absolute Error of about 1.860. The Cross Validation (CV) Score for the Support Vector Machine (SVM) approach is -2.1651. The datasets metrics are not reliable on any outer parameter in this manner the variety of exactness is constrained, and high accuracy is accomplished.


2021 ◽  
Author(s):  
Saumitra Dwivedi ◽  
Guillaume Suzanne ◽  
Abdulhakim Algadban ◽  
Ibrahim A. Hameed

Abstract This paper aims to explore modern techniques based on artificial intelligence (AI) and data science, in order to produce data-driven workflows to analyze, model, and simulate reservoir pressure dynamics. In this paper, it was investigated a data-driven workflow to model reservoir pressure at any point in space and time from sparse pressure data observed at wells, without building a physics-based numerical model. This workflow was termed as spatiotemporal modelling of reservoir pressure. Spatiotemporal modelling of reservoir pressure was based on a three-step workflow including multivariate analysis of pressure data and relevant explanatory variables (features), pressure modelling and spatiotemporal interpolation. The overall workflow provided a comprehensive method to understand and map the reservoir pressure dynamics using data science tools. Several modelling techniques such as generalized additive models, artificial neural networks and spatiotemporal kriging were investigated for their applicability and accuracy. The workflow was applied to a real oil and gas reservoir case, for which the reservoir pressure prediction accuracy was optimized through a few experiments. The optimum experiment produced highly accurate prediction with a mean absolute error of 26.85 psi measured on the training dataset. Moreover, a portion of data used was kept to evaluate blind test accuracy, which amounted to a mean absolute error of 55 psi, for the optimum case. The proposed data-driven workflow was aimed to improve current methods of reservoir engineering and simulation. The suggested workflow showed high accuracy in reservoir pressure predictions with high efficiency in terms of computational resources and time. Additionally, the proposed workflow was developed using open-source libraries which pose no additional cost to computation, in contrast to extremely expensive industry standard physics-based reservoir simulation software. Finally, this workflow could also be used to model other reservoir variables such as production ratios (Water cut, and Gas-Oil Ratio), contacts (Water-Oil contact and Gas-Oil contact), among others.


2020 ◽  
Vol 59 (7) ◽  
pp. 1239-1259
Author(s):  
Dehe Xu ◽  
Qi Zhang ◽  
Yan Ding ◽  
Huiping Huang

AbstractDrought forecasts could effectively reduce the risk of drought. Data-driven models are suitable forecast tools because of their minimal information requirements. The motivation for this study is that because most data-driven models, such as autoregressive integrated moving average (ARIMA) models, can capture linear relationships but cannot capture nonlinear relationships they are insufficient for long-term prediction. The hybrid ARIMA–support vector regression (SVR) model proposed in this paper is based on the advantages of a linear model and a nonlinear model. The multiscale standard precipitation indices (SPI: SPI1, SPI3, SPI6, and SPI12) were forecast and compared using the ARIMA model and the hybrid ARIMA–SVR model. The performance of all models was compared using measures of persistence, such as the coefficient of determination, root-mean-square error, mean absolute error, Nash–Sutcliffe coefficient, and kriging interpolation method in the ArcGIS software. The results show that the prediction accuracies of the multiscale SPI of the combined ARIMA–SVR model and the single ARIMA model were related to the time scale of the index, and they gradually increase with an increase in time scale. The predicted value decreases with increase in lead time. Comparing the measured data with the predicted data from the model shows that the combined ARIMA–SVR model had higher prediction accuracy than the single ARIMA model and that the predicted results 1–2 months ahead show reasonably good agreement with the actual data.


2021 ◽  
Vol 10 (11) ◽  
pp. e33101119347
Author(s):  
Ewethon Dyego de Araujo Batista ◽  
Wellington Candeia de Araújo ◽  
Romeryto Vieira Lira ◽  
Laryssa Izabel de Araujo Batista

Introdução: a dengue é uma arbovirose causada pelo vírus DENV e transmitida para o homem através do mosquito Aedes aegypti. Atualmente, não existe uma vacina eficaz para combater todas as sorologias do vírus. Diante disso, o combate à doença se volta para medidas preventivas contra a proliferação do mosquito. Os pesquisadores estão utilizando Machine Learning (ML) e Deep Learning (DL) como ferramentas para prever casos de dengue e ajudar os governantes nesse combate. Objetivo: identificar quais técnicas e abordagens de ML e de DL estão sendo utilizadas na previsão de dengue. Métodos: revisão sistemática realizada nas bases das áreas de Medicina e de Computação com intuito de responder as perguntas de pesquisa: é possível realizar previsões de casos de dengue através de técnicas de ML e de DL, quais técnicas são utilizadas, onde os estudos estão sendo realizados, como e quais dados estão sendo utilizados? Resultados: após realizar as buscas, aplicar os critérios de inclusão, exclusão e leitura aprofundada, 14 artigos foram aprovados. As técnicas Random Forest (RF), Support Vector Regression (SVR), e Long Short-Term Memory (LSTM) estão presentes em 85% dos trabalhos. Em relação aos dados, na maioria, foram utilizados 10 anos de dados históricos da doença e informações climáticas. Por fim, a técnica Root Mean Absolute Error (RMSE) foi a preferida para mensurar o erro. Conclusão: a revisão evidenciou a viabilidade da utilização de técnicas de ML e de DL para a previsão de casos de dengue, com baixa taxa de erro e validada através de técnicas estatísticas.


Author(s):  
Jasleen Kaur ◽  
Khushdeep Dharni

Uniqueness in economies and stock markets has given rise to an interesting domain of exploring data mining techniques across global indices. Previously, very few studies have attempted to compare the performance of data mining techniques in diverse markets. The current study adds to the understanding regarding the variations in performance of data mining techniques across the global stock indices. We compared the performance of Neural Networks and Support Vector Machines using accuracy measures Mean Absolute Error (MAE) and R­­­­oot Mean Square Error (RMSE) across seven major stock markets. For prediction purpose, technical analysis has been employed on selected indicators based on daily values of indices spanning a period of 12 years. We created 196 data sets spanning different time periods for model building such as 1 year, 2 years, 3 years, 4 years, 6 years and 12 years for selected seven stock indices. Based on prediction models built using Neural Networks and Support Vector Machines, the findings of the study indicate there is a significant difference, both for MAE and RMSE, across the selected global indices. Also, Mean Absolute Error and Root Mean Square Error of models built using NN were greater than Mean Absolute Error and Root Mean Square Error of models built using SVM.


2019 ◽  
Vol 25 (5) ◽  
pp. 451-459
Author(s):  
Xinhua Xue ◽  
Xin Chen

Accurate determination of the ultimate bearing capacity (UBC) of shallow foundations is vital for the safety of structures and buildings. Due to the inherent spatial variability characteristics of soil properties, some new approaches are needed to accurately determine the UBC of shallow foundations. The objective of this study is to develop a hybrid least squares support vector machine (LSSVM) and an improved particle swarm optimization (IPSO) algorithm for determining the UBC of shallow foundations. To validate the hybrid IPSO-LSSVM model, a comparison of the predictions was carried out among different models and theoretical methods. Three statistical indexes, namely the root-mean-square error (RMSE), the mean absolute error (MAE) and the correlation coefficient (R) were employed to measure and evaluate the performance of these models. The results showed that the developed hybrid IPSO-LSSVM model can be used for determining the UBC of shallow foundations with high accuracy.


Sign in / Sign up

Export Citation Format

Share Document