Kinematic and geochronological constraints on shear deformation in the Ferriere-Mollières shear zone (Argentera-Mercantour Massif, Western Alps): implications for the evolution of the Southern European Variscan Belt

2018 ◽  
Vol 107 (6) ◽  
pp. 2163-2189 ◽  
Author(s):  
Matteo Simonetti ◽  
Rodolfo Carosi ◽  
Chiara Montomoli ◽  
Antonio Langone ◽  
Enrico D’Addario ◽  
...  
1970 ◽  
Vol 7 (1) ◽  
pp. 1-7 ◽  
Author(s):  
Roland Pusch

A series of unconfined compression tests has been made on a marine, quick clay and small specimens were extracted for microstructural investigation. The natural microstructural pattern was characterized by a network of small aggregates connected by links of particles. The links broke down successively at increasing shear deformation and formed domain-like groups of particles. In the macroscopic shear zone the shear forces tended to orient and deform the aggregates.The aggregates behaved as rigid bodies to a certain stress level during the shear process. The concept of residual strength may correspond to the state where the majority of the links have been broken while the aggregates are still intact.


2021 ◽  
Author(s):  
Marianna Corre ◽  
Martine Lanson ◽  
Arnaud Agranier ◽  
Stephane Schwartz ◽  
Fabrice Brunet ◽  
...  

<p>Magnetite (U-Th-Sm)/He dating method has a strong geodynamic significance, since it provides geochronological constraints on serpentinization episodes, which are associated to important geological processes such as ophiolite obductions, subduction zones, transform faults and fluid circulations. Although helium content that range from 0.1 pmol/g to 20 pmol/g can routinely be measured, the application of this dating technique however is still limited due to major analytical obstacles. The dissolution of a single magnetite crystal and the measurement of the U, Th and Sm present at the ppb level in the corresponding solution, remains highly challenging, especially because of the absence of magnetite standard. In order to overcome these analytical issues, two strategies have been followed, and tested on magnetite from high-pressure rocks from the Western Alps (Schwartz et al., 2020). Firstly, we purified U, Th and Sm (removing Fe and other major elements) using ion exchange columns in order to analyze samples, using smaller dilution. Secondly, we performed in-situ analyzes by laser-ablation-ICPMS. Since no solid magnetite certified standard is yet available, we synthetized our own by precipitating magnetite nanocrystals. The first quantitative results obtained by LA-ICP-MS using this synthetic material along with international glass standards, are promising. The laser-ablation technique overcomes the analytical difficulties related to sample dissolution and purification. It thus opens the path to the dating of magnetite (and also spinels) in various ultramafic rocks such as mantle xenoliths or serpentinized peridotites in ophiolites.</p><p>Schwartz S., Gautheron C., Ketcham R.A., Brunet F., Corre M., Agranier A., Pinna-Jamme R., Haurine F., Monvoin G., Riel N., 2020, Unraveling the exhumation history of high-press ure ophiolites using magnetite (U-Th-Sm)/He thermochronometry. Earth and Planetary Science Letters 543 (2020) 116359.</p>


2007 ◽  
Vol 79 (3) ◽  
pp. 441-455 ◽  
Author(s):  
Cláudia R. Passarelli ◽  
Miguel A.S. Basei ◽  
Hélcio J. Prazeres-Filho ◽  
Oswaldo Siga-Jr. ◽  
Gergely A.J. Szabó ◽  
...  

The Juréia Massif, southeastern São Paulo State (Brazil), is part of the Registro Domain, limited to the north by the Cubatão-Itariri Shear System and to the south by the Serrinha Shear Zone. Mostly composed of migmatitic granitegneiss rocks, represents a Paleoproterozoic terrane (1.9-2.2 Ga) strongly deformed during the Neoproterozoic (750-580 Ma). The present tectonic scenario was established at the end of the Neoproterozoic, as a result of collages associated with the formation of Western Gondwana. The Ponta da Juréia, our study area within the Juréia Massif, is constituted by paragneisses (garnet-muscovite-biotite gneisses). The monazite U-Pb age of 750 Ma is related to a main regional metamorphic event that reached the high amphibolite facies, recorded in rocks from the Itatins Complex and Cachoeira Sequence as well, which also belongs to the Registro Domain. The paragneissic rocks of this study are affected by the E-W-trending Serrinha Shear Zone, registering a predominantly dextral movement. Biotite K-Ar ages of 482 ± 12 Ma may represent later movements and reflect the younger ages of reactivation of the major lineaments and juxtaposition of the tectonic blocks involved.


2021 ◽  
Author(s):  
Wanli Gao ◽  
Zongxiu Wang

<p><strong><img src="https://contentmanager.copernicus.org/fileStorageProxy.php?f=gepj.67d6c7216eff55356050161/sdaolpUECMynit/12UGE&app=m&a=0&c=5572aca4b392eef83f52919e1be673e9&ct=x&pn=gepj.elif&d=1" alt="">Abstract</strong>:The Zongwulong tectonic belt (ZTB) is located between the northern Qaidam tectonic belt and the south Qilian orogenic belt and contains Late Paleozoic and Early- Middle Triassic strata. Structural features and geochronology of Zongwulong ductile shear zone have key implications for the tectonic property of the ZTB. This study integrated field structure, microscopic structure and <sup>40</sup>Ar/<sup>39</sup>Ar laser probe analysis. The shear zone strikes ~NEE-SWW and dips at a high angle, with a NWW-SEE trending and WE stretching lineation, indicating the shear zone as a thrust- slip shear ductile shear. The asymmetric folds, rotating porphyroclast,structural lens and crenulation cleavage can be seen in the field. Mica fish, S − C fabrics, σ type quartz porphyroclastic and quartz wire drawing structure can also be observed under microscope, indicating that the strike- slip- related ductile deformation and mylonitization occurred under low- grade greenschist facies conditions at temperatures of <em>300° C − 400° C</em>.  The highly deformed<br>mylonite schist yielded <sup>40</sup>Ar/<sup>39</sup>Ar ages <em>(245.8±1.7)Ma </em>and <em>(238.5±2.6)</em>Ma for muscovite and biotite, respectively, indicating that the shear deformation occurred during the Early- Mid Triassic. Combined with comprehensive analysis of regional geology and petrology, the authors hold that the age of ductile shear deformation represents the time of Triassic orogeny in the ZTB. The oroginic activity was probably related to the oblique collision between the South Qilian block and the Oulongbuluke block after the closure of the northermost Paleo-Tethys ocean.</p>


1995 ◽  
Vol 84 (2) ◽  
Author(s):  
Antonio Azor ◽  
FranciscoGonz�lez Lodeiro ◽  
J.Fernando Simancas ◽  
Fernando Bea

1995 ◽  
Vol 117 (3) ◽  
pp. 269-277 ◽  
Author(s):  
Fuh-Kuo Chen

The shear properties of different simple-shear sheet specimens were investigated using the elastic-plastic finite element method. Tension loaded specimens with a shear zone formed at the center area between two transverse slots were adopted to analyze the shear properties of sheet metals under uniaxial tension. Specimens prepared by single material as well as by bonding two different strength materials together were both studied. Since the shear zone could not be kept free from bending stress during loading, the pure shear deformation was not possibly obtained. However, by varying the shape and the location of the slots, an optimum geometry of the shear zone which yields a nearly pure shear deformation in the plastic range was determined through the finite element analysis. The results also revealed when the shear zone was formed by a low strength material which was bonded on each side with a higher strength material, a nearly pure shear deformation could be obtained even in the elastic range.


2016 ◽  
Vol 119 ◽  
pp. 17-37 ◽  
Author(s):  
I. N'diaye ◽  
A. Essaifi ◽  
M. Dubois ◽  
B. Lacroix ◽  
K.M. Goodenough ◽  
...  

2014 ◽  
Vol 107 (1) ◽  
pp. 23-47 ◽  
Author(s):  
Paola Manzotti ◽  
Michele Zucali ◽  
Michel Ballèvre ◽  
Martin Robyr ◽  
Martin Engi

Sign in / Sign up

Export Citation Format

Share Document