Microstructural changes in soft quick clay at failure

1970 ◽  
Vol 7 (1) ◽  
pp. 1-7 ◽  
Author(s):  
Roland Pusch

A series of unconfined compression tests has been made on a marine, quick clay and small specimens were extracted for microstructural investigation. The natural microstructural pattern was characterized by a network of small aggregates connected by links of particles. The links broke down successively at increasing shear deformation and formed domain-like groups of particles. In the macroscopic shear zone the shear forces tended to orient and deform the aggregates.The aggregates behaved as rigid bodies to a certain stress level during the shear process. The concept of residual strength may correspond to the state where the majority of the links have been broken while the aggregates are still intact.

2020 ◽  
Vol 10 (18) ◽  
pp. 6475
Author(s):  
Zhiqing Li ◽  
Feng Hu ◽  
Shengwen Qi ◽  
Ruilin Hu ◽  
Yingxin Zhou ◽  
...  

Soil–rock mixtures (SRM) have the characteristics of distinct heterogeneity and an obvious structural effect, which make their physical and mechanical properties very complex. This study aimed to investigate the deformation properties and failure mode of the shear zone as well as the movement of block stones in SRM experimentally, not only considering SRM shear strength. The particle composition and proportion of specimens were based on field samples from an SRM slope along national highway 318 in Xigaze, Tibet. Shear zone deformation tests were carried out using an SRM-1000 large-sized geotechnical apparatus controlled by a motor servo, considering the effects of different stone contents by mass (0, 30%, 50%, 70%), vertical pressures (50, 100, 200, 300, and 400 kPa), and block stone sizes (9.5–19.0, 19.0–31.5, and 31.5–53.0 mm). The characteristics of the shear zone deformation and block stone interactions were monitored by placing aluminum wires and dry ash in holes in the specimens. The results showed that the stone content 30% and 70% were two critical thresholds to determine the deformation characteristics of SRM. Under the conditions of high stone content and large particle size, the stones throughout the shear surface tended to extrude and roll during the shear process. The block stones around the shear surface were mainly affected by dilatancy and exhibited extrusion, particle breakage, and redistribution. The deformation pattern could be considered as be analogous to push-type shear deformation from the back to front or composite shear deformation from the front and back to the middle of the slope. It is of great importance to study the shear characteristics and deformation evolution of SRM to understand the progressive shear process of the sliding zone and the failure mode of landslides.


2006 ◽  
Vol 15-17 ◽  
pp. 633-638 ◽  
Author(s):  
Jong Woong Kim ◽  
Hyun Suk Chun ◽  
Sang Su Ha ◽  
Jong Hyuck Chae ◽  
Jin Ho Joo ◽  
...  

Board-level reliability of conventional Sn-37Pb and Pb-free Sn-3.0Ag-0.5Cu solder joints was evaluated using thermal shock testing. In the microstructural investigation of the solder joints, the formation of Cu6Sn5 intermetallic compound (IMC) layer was observed between both solders and Cu lead frame, but any crack or newly introduced defect cannot be found even after 2000 cycles of thermal shocks. Shear test of the multi layer ceramic capacitor (MLCC) joints were also conducted to investigate the effect of microstructural variations on the bonding strength of the solder joints. Shear forces of the both solder joints decreased with increasing thermal shock cycles. The reason to the decrease in shear force was discussed with fracture surfaces of the shear tested solder joints.


Author(s):  
Ömür Çimen ◽  
Mehmet Saltan ◽  
S. Nilay Keskin

AbstractHigh-plasticity clayey subgrade, which is unsuitable for road construction, may sometimes occur along highway routes. In such cases, engineers need to change the route of a highway project, resulting in an increase in road length and project costs. In this study, waste pumice was examined for stabilization of high-plasticity clayey subgrade, which is inappropriate for road construction. For this purpose, the physical and index properties of clay and pumice were determined. Then, the pumice was mixed with high plasticity clay at different ratios by weight. By performing standard Proctor compaction tests on the mixtures, the effects of adding pumice on compaction were also studied. Unconfined compression tests and California bearing ratio (CBR) tests were performed on all pumice-clay mixtures, and the test results and the CBR ratios were compared for each sample, respectively. The results showed that pumice stabilization improved the mechanical properties and reduced the swelling potential of high plasticity clayey subgrade.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Ali Ateş

Soil stabilization has been widely used as an alternative to substitute the lack of suitable material on site. The use of nontraditional chemical stabilizers in soil improvement is growing daily. In this study a laboratory experiment was conducted to evaluate the effects of waterborne polymer on unconfined compression strength and to study the effect of cement grout on pre-venting of liquefiable sandy soils. The laboratory tests were performed including grain size of sandy soil, unit weight, ultrasonic pulse velocity, and unconfined compressive strength test. The sand and various amounts of polymer (1%, 2%, 3%, and 4%) and cement (10%, 20%, 30%, and 40%) were mixed with all of them into dough using mechanical kneader in laboratory conditions. Grouting experiment is performed with a cylindrical mould of  mm. The samples were subjected to unconfined compression tests to determine their strength after 7 and 14 days of curing. The results of the tests indicated that the waterborne polymer significantly improved the unconfined compression strength of sandy soils which have susceptibility of liquefaction.


2021 ◽  
Author(s):  
Wanli Gao ◽  
Zongxiu Wang

<p><strong><img src="https://contentmanager.copernicus.org/fileStorageProxy.php?f=gepj.67d6c7216eff55356050161/sdaolpUECMynit/12UGE&app=m&a=0&c=5572aca4b392eef83f52919e1be673e9&ct=x&pn=gepj.elif&d=1" alt="">Abstract</strong>:The Zongwulong tectonic belt (ZTB) is located between the northern Qaidam tectonic belt and the south Qilian orogenic belt and contains Late Paleozoic and Early- Middle Triassic strata. Structural features and geochronology of Zongwulong ductile shear zone have key implications for the tectonic property of the ZTB. This study integrated field structure, microscopic structure and <sup>40</sup>Ar/<sup>39</sup>Ar laser probe analysis. The shear zone strikes ~NEE-SWW and dips at a high angle, with a NWW-SEE trending and WE stretching lineation, indicating the shear zone as a thrust- slip shear ductile shear. The asymmetric folds, rotating porphyroclast,structural lens and crenulation cleavage can be seen in the field. Mica fish, S − C fabrics, σ type quartz porphyroclastic and quartz wire drawing structure can also be observed under microscope, indicating that the strike- slip- related ductile deformation and mylonitization occurred under low- grade greenschist facies conditions at temperatures of <em>300° C − 400° C</em>.  The highly deformed<br>mylonite schist yielded <sup>40</sup>Ar/<sup>39</sup>Ar ages <em>(245.8±1.7)Ma </em>and <em>(238.5±2.6)</em>Ma for muscovite and biotite, respectively, indicating that the shear deformation occurred during the Early- Mid Triassic. Combined with comprehensive analysis of regional geology and petrology, the authors hold that the age of ductile shear deformation represents the time of Triassic orogeny in the ZTB. The oroginic activity was probably related to the oblique collision between the South Qilian block and the Oulongbuluke block after the closure of the northermost Paleo-Tethys ocean.</p>


1995 ◽  
Vol 117 (3) ◽  
pp. 269-277 ◽  
Author(s):  
Fuh-Kuo Chen

The shear properties of different simple-shear sheet specimens were investigated using the elastic-plastic finite element method. Tension loaded specimens with a shear zone formed at the center area between two transverse slots were adopted to analyze the shear properties of sheet metals under uniaxial tension. Specimens prepared by single material as well as by bonding two different strength materials together were both studied. Since the shear zone could not be kept free from bending stress during loading, the pure shear deformation was not possibly obtained. However, by varying the shape and the location of the slots, an optimum geometry of the shear zone which yields a nearly pure shear deformation in the plastic range was determined through the finite element analysis. The results also revealed when the shear zone was formed by a low strength material which was bonded on each side with a higher strength material, a nearly pure shear deformation could be obtained even in the elastic range.


2016 ◽  
Vol 35 (10) ◽  
pp. 967-972
Author(s):  
H.J. Hu ◽  
Y.Y. Li ◽  
X. Wang ◽  
D.F. Zhang ◽  
M.B. Yang

AbstractIn this paper, the effects of extrusion–shear (ES) on the microstructures and mechanical properties of AZ31 magnesium alloy has been studied, which has been achieved by conducting a lot of experiments and tests, including ES process, direct extrusion with different billet temperatures, microstructure analysis, hardness test, tensile & compression tests. The results show that the ES-processed rods has higher strengths (yield strength and tensile strength) than the direct extrusion ones with the same billet temperature, which contributed to their lower averaged grain size obtained from microstructure analysis according to Hall–Petch relation. Besides, the hardness of ES-processed AZ31 magnesium alloy decreases with the increasing of billet temperature. By comparing the two processes, it can be seen that the ES process could refine the microstructure and improve the mechanical properties of magnesium alloy.


2018 ◽  
Vol 928 ◽  
pp. 263-268 ◽  
Author(s):  
Anuchit Uchaipichat

The soil-cement columns are generally installed and cured in the soft clay layers under confining pressure. The strength of the soil-cement columns may be influenced by confining pressure during curing period. In this study, the main objective was to study the influence of curing pressure on unconfined compressive strength of cemented clay. A series of unconfined compression tests was performed on a cement admixed clay sample cured under pressure values of 0 kPa (atmospheric pressure), 25kPa, 50kPa and 100 kPa using a typical unconfined compression equipment. The test samples with values of cement content of 0.5, 1.0 and 2.0 percent were cured for 28 days.The stress-strain curves obtained from all tests show a peak value of stress. The unconfined compressive strength or peak stress obviously increased with increasing cement content for all curing pressure conditions. It can be observed that the strength of samples gradually increased with curing pressure for cement content of 0.5 percent. For cement contents of 1.0 and 2.0 percent, the strengths of samples cured under pressures of 25 kPa dramatically increased from the strength of samples cured without pressure (0 kPa), however, the strengths of samples for curing pressures of 25, 50 and 100 kPa were not clearly different.


Sign in / Sign up

Export Citation Format

Share Document