scholarly journals Microstructural and histochemical analysis of aboveground organs of Centaurea cyanus used in herbal medicine

PROTOPLASMA ◽  
2019 ◽  
Vol 257 (1) ◽  
pp. 285-298 ◽  
Author(s):  
Weronika Haratym ◽  
Elżbieta Weryszko-Chmielewska ◽  
Agata Konarska

Abstract Centaurea cyanus L. is a valuable source of many different bioactive substances. It is used in herbal medicine, but the structure of its organs used as raw material and secretory tissues has been insufficiently examined. The aim of this paper was to investigate the microstructure of C. cyanus flowers, bracts, stems and leaves with particular emphasis on secretory structures. Moreover, the main classes of secondary metabolites present in the secretion were identified and the taxonomic value of some micromorphological and anatomical features was analysed. Histochemical, micromorphological and ultrastructural analyses of aboveground organs of C. cyanus were carried out using light, fluorescence, scanning and transmission electron microscopy. The analyses revealed the presence of petal papillae and a characteristic cuticular pattern on the petals, stamens and stylar hairs. There were four types of non-glandular trichomes on the bracts, leaves and stem surfaces. The epidermal cells of the bracts contained prismatic calcium oxalate crystals. Two kinds of secretory structures, i.e. glandular trichomes and ducts, were observed in the C. cyanus organs. The glandular trichomes were located on the bract and stem surfaces, and the ducts were detected in the leaves and stems. Ultrastructural analyses of the epithelium of the ducts showed the presence of strongly osmiophilic insoluble phenolic material in vacuoles as well as moderately osmiophilic insoluble lipidic material in elaioplasts and vesicles. The results of histochemical assays showed a heterogeneous nature of the duct secretion, which contained essential oil, lipids, flavonoids, tannins and terpenes containing steroids.

PROTOPLASMA ◽  
2019 ◽  
Vol 257 (1) ◽  
pp. 299-317 ◽  
Author(s):  
Agata Konarska ◽  
Piotr Chmielewski

Abstract Orobanche picridis is an obligate root parasite devoid of chlorophyll in aboveground organs, which infects various Picris species. Given the high level of phenotypic variability of the species, the considerable limitation of the number of taxonomically relevant traits (mainly in terms of generative elements), and the low morphological variation between species, Orobanche is regarded as one of the taxonomically most problematic genera. This study aimed to analyse the taxonomic traits of O. picridis flowers with the use of stereoscopic and bright-field microscopy as well as fluorescence, scanning, and transmission electron microscopy. The micromorphology of sepals, petals, stamens, and pistils was described. For the first time, the anatomy of parasitic Orobanche nectaries and the ultrastructure of nectaries and glandular trichomes were presented. Special attention was paid to the distribution and types of glandular and non-glandular trichomes as well as the types of metabolites contained in these structures. It was demonstrated that the nectary gland was located at the base of the gynoecium and nectar was secreted through modified nectarostomata. The secretory parenchyma cells contained nuclei, large amyloplasts with starch granules, mitochondria, and high content of endoplasmic reticulum profiles. Nectar was transported via symplastic and apoplastic routes. The results of histochemical assays and fluorescence tests revealed the presence of four groups of metabolites, i.e. polyphenols (tannins, flavonoids), lipids (acidic and neutral lipids, essential oil, sesquiterpenes, steroids), polysaccharides (acidic and neutral polysaccharides), and alkaloids, in the trichomes located on perianth elements and stamens.


Symmetry ◽  
2018 ◽  
Vol 11 (1) ◽  
pp. 13 ◽  
Author(s):  
Jiansheng Guo ◽  
Cheng Zhou

Pogostemon auricularius, an aromatic plant in Lamiaceae, has wide application in pharmaceutical preparations. However, little is known about the secretory structures that contain the medicinal compounds. In this study, two kinds of glandular trichome types, including peltate glandular trichomes and short-stalked capitate trichomes, were identified in the leaves and stems by cryo-scanning electron microscope. Oil secretion from the glands contained lipids, flavones, and terpenes, and the progresses of secretion were different in the two glands types. The investigation by transmission electron microscope indicated that the endoplasmic reticulum system and plastids were involved in the biosynthesis of oils in the two glandular trichomes. The vacuoles showed a new role in the oil preparations and storage. The synthesized oil could be transported from the head cell to the sub-cuticular space by different way in the two glands. Comparative analysis of the development, distribution, histochemistry and ultrastructures of the secretory structures in Pogostemon auricularius led us to propose that the two glands may make different contribution to the collection of medicinal compounds. Furthermore, the characteristics of two glands in the secretory stage probably indicated the synthesizing site of metabolite.


1999 ◽  
Vol 47 (4) ◽  
pp. 257-263 ◽  
Author(s):  
Anna Marta Pagni ◽  
Antonio Masini

In the vegetative organs of Santolina leucantha Bertol. (Anthemideae), two distinct types of secretory structures are present: Internal secretory ducts and external glandular trichomes. The ducts are variable in morphology and location, depending on the organ in which they are present. The trichomes, however, show the same structure everywhere. In the roots, there are also scattered cells rich in secretion that are distributed in the periphery of the cortical cylinder. The histochemical analysis of the secretion reveals the presence in all the vegetative organs of many important secondary compounds. Vegetative secretory structures are similar to those in the capitulum we have described in a previous paper.


Plants ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 512
Author(s):  
Kareshma Doolabh ◽  
Yougasphree Naidoo ◽  
Yaser Hassan Dewir ◽  
Nasser Al-Suhaibani

Commelina benghalensis L. is used as a traditional medicine in treating numerous ailments and diseases such as infertility in women, conjunctivitis, gonorrhea, and jaundice. This study used light and electron microscopy coupled with histochemistry to investigate the micromorphology, ultrastructure and histochemical properties of C. benghalensis leaves and stems. Stereo and scanning electron microscopy revealed dense non-glandular trichomes on the leaves and stems and trichome density was greater in emergent leaves than in the young and mature. Three morphologically different non-glandular trichomes were observed including simple multicellular, simple bicellular and simple multicellular hooked. The simple bicellular trichomes were less common than the multicellular and hooked. Transmission electron micrographs showed mitochondria, vesicles and vacuoles in the trichome. The leaf section contained chloroplasts with plastoglobuli and starch grains. Histochemical analysis revealed various pharmacologically important compounds such as phenols, alkaloids, proteins and polysaccharides. The micromorphological and ultrastructural investigations suggest that Commelina benghalensis L. is an economically important medicinal plant due to bioactive compounds present in the leaves and stems.


2012 ◽  
Vol 60 (7) ◽  
pp. 632 ◽  
Author(s):  
Aline Bertolosi Bombo ◽  
Tuane Santos De Oliveira ◽  
Adriana Da Silva Santos De Oliveira ◽  
Vera Lúcia Garcia Rehder ◽  
Mara Angelina Galvão Magenta ◽  
...  

Recently, molecular analysis caused the South American Viguiera Kunth species to be transferred to Aldama La Llave. However, the circumscription has not been established for certain of the South American species, including Aldama filifolia (Sch.Bip. ex Baker) E.E.Schill. & Panero, A. linearifolia (Chodat) E.E.Schill. & Panero and A. trichophylla (Dusén) Magenta (comb. nov.), which had previously been treated as synonyms because of their high similarity. Therefore, the present study aimed to evaluate the anatomy of the aerial organs, and the yield and chemical composition of the essential oils from these three species, to determine the differences among them and thereby assist in species distinction. The anatomical analysis identified characteristics unique to each species, which are primarily related to the position and occurrence of secretory structures. Histochemical analysis demonstrated that the glandular trichomes and the canals secrete lipophilic substances, which are characterised by the presence of essential oils. The analysis of these essential oils identified monoterpenes as their major constituent and allowed for the recognition of chemical markers for each species. The anatomical and chemical characteristics identified by the present study confirmed that the studied samples belong to three distinct taxa.


Author(s):  
Mirosława Chwil ◽  
Mikołaj Kostryco

Leaves of Rubus idaeus are a raw material, ingredients of herbal blend and a source of antioxidants. There are no data concerning histochemistry of trichomes and little is known about the leaves structure of this species. The aim of this study was to determine the histochemistry of active compounds and the structure of glandular trichomes, micromorphology, anatomy and ultrastructure of leaves as well as content of elements. To determine the histochemistry of glandular trichomes different chemical compounds were used. The leaves structure was analysed using light, scanning, and transmission electron microscopes. The content of elements was determined with atomic absorption spectrometry and the microanalysis of the epidermis ultrastructure was carried out with transmission electron microscope equipped with a digital X-ray analyser. In glandular trichomes: polyphenols, terpenes, lipids, proteins, and carbohydrates were identified. The main elements in the ultrastructure of the epidermis were: Na, S, Ca, Mg, B, Mo, and Se. In dry matter of leaves K, Mg, Ca, P, and Fe were dominant. Infusions from leaves are safe for health in terms of the Cd and Pb concentrations. Leaves can be a valuable raw material. Non-glandular trichomes prevent clumping of mixed raw materials in herbal mixtures.


2019 ◽  
Vol 42 (4) ◽  
pp. 701-715 ◽  
Author(s):  
Marta Dmitruk ◽  
Aneta Sulborska ◽  
Beata Żuraw ◽  
Ernest Stawiarz ◽  
Elżbieta Weryszko-Chmielewska

Abstract Dracocephalum moldavica L. is an aromatic plant emitting intense lemon scent. The aboveground parts of the plants constitute raw material for medicine and food industry. In contrast to the comprehensively investigated trichomes, there are only few studies of the histochemical characteristics of the leaves of essential oil-bearing plants from the family Lamiaceae. The present study shows the micromorphology, anatomy, and histochemistry of the leaves of the analysed species. The research aimed to determine the location of essential oil and other specialised metabolites in leaf tissues. The investigations of fresh and fixed material were carried out with the use of light, fluorescence, and scanning electron microscopy. Additionally, the content and composition of essential oil in the leaves were determined with the GC/MS method. The leaf epidermis had non-glandular unbranched trichomes and three types of glandular trichomes: peltate as well as long and short capitate trichomes. The results of the histochemical assays showed positive reactions to lipids and to some secondary compounds such as essential oil, terpenes, phenolic compounds, and flavonoids in all types of the glandular and non-glandular trichomes. The same compounds were found in the epidermis cells of the leaves. The results of the present study indicate that the intense smell of the leaves is associated with emission of essential oil not only by the glandular and non-glandular trichomes but also by the leaf epidermis cells. The main components in the essential oil (0.10%) include geranial, neral, geraniol, nerol, and trans-myrtanol acetate. Since D. moldavica has been used as an adulterant of Melissa officinalis L., the anatomical traits of leaves and the essential oil composition in both species were compared in the study.


2018 ◽  
Vol 69 (5) ◽  
pp. 1089-1098
Author(s):  
Elena Suzana Biris Dorhoi ◽  
Maria Tofana ◽  
Simona Maria Chis ◽  
Carmen Elena Lupu ◽  
Ticuta Negreanu Pirjol

The valorification of the marine biomass is an important resource for many industries like pharmaceutical, supplying raw material for the extraction of bioactive substances (vitamins, sterols and collagen), cosmetics, biofertilizers and wastewater treatment. In the last years a special attention has been given to the use of macroalgae. The aim of this study was to emphasize the capacity of two representative green algae species frequent presents on the Romanian shore, Ulva lactuca (L.) and Cladophora vagabunda (L.) Hoek, to remove two usual detergents from wastewater. The green algae washed, dried at room temperature, macerated to powder were introduced into different filter paper for comparison, then immersed in waste water treated with different concentrations of detergents. Tap water was used for the experiment. The results show that Ulva lactuca (L.) species is suitable than Cladophora vagabunda (L.) Hoek species, for wastewater treatment.


2014 ◽  
Vol 1010-1012 ◽  
pp. 1015-1019
Author(s):  
Ze Xin Yang ◽  
Lin Dong ◽  
Meng Wang ◽  
Huan Li

The main purpose of this article is to develop an environmentally friendly and economically effective process to produce silica from rice husk ash. Sodium silicate solution was prepared by the reaction of rice husk ash and sodium hydroxide solution, and then the sodium silicate solution was used as the raw material for the preparation of silica with sodium bicarbonate. During the reaction, the by-product can be passed into CO2 to prepare sodium bicarbonate what can be reutilized. Experimental route achieved resource recycling and environment-friendly, low energy consumption, zero emissions and so on. Meanwhile the microstructures of the silica powders were characterized by Transmission electron microscope (TEM), X-ray diffraction (XRD), Fourier transform infrared (FTIR) and Thermo gravimetric/Differential thermal analyzer (TG-DTA).The purity of silicon was up to 99.43% and the particle size was 200-300nm.


Author(s):  
Zhou J ◽  
◽  
Dong Y ◽  
Ma Y ◽  
Zhang T ◽  
...  

Graphene Quantum Dots (GQDs) have been prepared by oxidationhydrothermal reaction, using ball-milling graphite as the starting materials. The prepared GQDs are endowed with excellent luminescence properties, with the optimum emission of 320nm. Blue photoluminescent emitted from the GQDs under ultraviolet light. The GQDs are ~3nm in width and 0.5~2 nm in thickness, revealed by high-resolution transmission electron microscopy and atomic force microscopy. In addition, Fourier transform infrared spectrum evidences the existence of carbonyl and hydroxyl groups, meaning GQDs can be dispersed in water easily and used in cellar imaging, and blue area inside L929 cells were clearly observed under the fluorescence microscope. Both low price of raw material and simple prepared method contribute to the high quality GQDs widespread application in future.


Sign in / Sign up

Export Citation Format

Share Document