scholarly journals Influence of cold atmospheric plasma on dental implant materials — an in vitro analysis

Author(s):  
Gunar Wagner ◽  
Benedikt Eggers ◽  
Dirk Duddeck ◽  
Franz-Josef Kramer ◽  
Christoph Bourauel ◽  
...  

Abstract Background and objectives Alterations in the microenvironment of implant surfaces could influence the cellular crosstalk and adhesion patterns of dental implant materials. Cold plasma has been described to have an influence on cells, tissues, and biomaterials. Hence, the mechanisms of osseointegration may be altered by non-thermal plasma treatment depending on different chemical compositions and surface coatings of the biomaterial. The aim of the present study is to investigate the influence of cold atmospheric plasma (CAP) treatment on implant surfaces and its biological and physicochemical side effects. Materials and methods Dental implant discs from titanium and zirconia with different surface modifications were treated with CAP at various durations. Cell behavior and adhesion patterns of human gingival fibroblast (HGF-1) and osteoblast-like cells (MG-63) were examined using scanning electron microscopy and fluorescence microscopy. Surface chemical characterization was analyzed using energy-dispersive X-ray spectroscopy (EDS). Quantitative analysis of cell adhesion, proliferation, and extracellular matrix formation was conducted including real-time PCR. Results CAP did not affect the elemental composition of different dental implant materials. Additionally, markers for cell proliferation, extracellular matrix formation, and cell adhesion were differently regulated depending on the application time of CAP treatment in MG-63 cells and gingival fibroblasts. Conclusions CAP application is beneficial for dental implant materials to allow for faster proliferation and adhesion of cells from the surrounding tissue on both titanium and zirconia implant surfaces with different surface properties. Clinical relevance The healing capacity provided through CAP treatment could enhance osseointegration of dental implants and has the potential to serve as an effective treatment option in periimplantitis therapy.

Author(s):  
Vygandas Rutkunas ◽  
Virginija Bukelskiene ◽  
Vaidotas Sabaliauskas ◽  
Evaldas Balciunas ◽  
Mangirdas Malinauskas ◽  
...  

2013 ◽  
Vol 9 (4) ◽  
pp. 327-334
Author(s):  
Yu-Ri Kim ◽  
Sang-Hui Seo ◽  
Eun Jeong Lee ◽  
Mi Jung Pyo ◽  
Hye Won Kim ◽  
...  

Author(s):  
Zeinab Rezaei Esfahrood ◽  
Amirhosein Zamanian ◽  
Maryam Torshabi ◽  
Maryam Abrishami

AbstractDifferent compounds of smoking (e.g., nicotine and cotinine) are risk factors for various diseases such as oral cancer and periodontal diseases. Some studies reported the negative effects of nicotine on cell proliferation and differentiation. The present in vitro study assessed the effects of nicotine and cotinine (long-acting metabolite of nicotine) on the attachment and viability of human gingival fibroblast (HGF) cells to tooth root surfaces.A total of 70 teeth specimens were placed into 48-well culture plates and covered with HGF cell suspension, in complete Dulbecco’s modified Eagle’s medium culture medium containing 1 nM, 1 μm, 1 mM, and 5 mM of nicotine and cotinine concentrations. Cellular attachment and viability measured using an MTT assay and a scanning electron microscope were used for cell morphological evaluation.After 24 h, low (nanomolar and micromolar) and high concentrations (millimolar) of nicotine and cotinine caused a significant reduction in the initial cell adhesion in comparison with the control group, but no significant difference was observed between the nicotine and the cotinine groups (p<0.05). Dentally attached cells with low concentrations of nicotine and cotinine proliferated 48 h after exposure, the same as the control group. However, dentally attached cells with high concentrations of nicotine and cotinine (especially 5 mM) did not proliferate 24 h after exposure (p<0.05).Low concentrations of nicotine and cotinine caused a reduction in the initial cell adhesion. However, no significant adverse effects on the proliferation of attached cells were seen in the longer period. High concentrations of nicotine and cotinine have adverse effects on the cell adhesion and proliferation of HGF cells.


Sign in / Sign up

Export Citation Format

Share Document