scholarly journals Improved design criterion for frictionally engaged contacts in overrunning clutches

Author(s):  
Nadine Nagler ◽  
Armin Lohrengel

AbstractOverrunning clutches, also known as freewheel clutches, are frictionally engaged, directional clutches; they transmit torque depending on the Freewheel clutch rings’ rotation directions. The torque causes a tangential force in the Hertzian contact area. The hitherto “state-of-the-art design criterion” bases on this load situation. In practice, axial loads additionally act on the frictionally engaged Hertzian contact area. This additional axial load can cause the loss of the friction connection and so the freewheel clutch slips. This publication presents an improved design criterion for frictionally engaged contacts in freewheel clutches. It allows to consider tangential as well as axial loads during the design process. Additionally, it offers the possibility to estimate the probability of frictional engagement loss and gross slip based on the freewheel clutch’s application scenario. This publication points out how to use the improved design criterion to design freewheel clutches that are more robust against a loss of function.

2015 ◽  
Vol 642 ◽  
pp. 212-216
Author(s):  
Yi Haung ◽  
Chin Chung Wei

Ball screw is a high-precision and high performance linear drive of mechanical elements. The frictional heat of internal components what is very significant impact for platform transmission in high speed and the high axial load and causes the thermal expansion of element. In this research , the influence of different greases on ball screw is investigated in thermal rising of nut and driving torque in high speed and high axial load. A vertical motion platform was used for driving performance test. Thermal rising of nut of ball screw and the variance of transmission torque whose lubricated by high viscosity base oil grease is significant larger than the lower one. High viscosity grease is not easy to carry out the friction heat generated at ball and raceway contact area due to the bad flowing properties. It also has more serious wear occurred at contact area and high friction force, whose causes the large variance of transmission torque.


Author(s):  
Mingfei Ma ◽  
Wen Wang ◽  
Wenxun Jiang

As a common phenomenon in elastohydrodynamic lubrication, cavitation has an effect on the completeness of the oil film in the contact area. Many studies have therefore been conducted on cavitation. Experimental researches on cavitation usually rely on optical interference observation, which offers a limited resolution and observation range. In this paper, an infrared thermal camera is used to observe the cavity bubbles on a ball-on-disc setup under sliding/rolling conditions. The results show that the cavity length increases with an increases of the entrainment speed and the viscosity of the lubricants. These observations are explained by a numerical model based on Elrod's algorithm. Effects of entrainment speed and lubricant viscosity on the breakup of cavitation bubbles and the cavitation states are investigated. Both the simulation and experimental results show that a negative pressure area is present behind the Hertzian contact area. The ambient pressure plays a role in maintaining cavitation state 1. The cavitation pressure is close to the vacuum pressure when the entrainment speed is low and to the ambient pressure instead when the entrainment speed is high.


2019 ◽  
Vol 10 (01) ◽  
pp. 1841002 ◽  
Author(s):  
Vladislav A. Yastrebov

In this paper, we use a deterministic multi-asperity model to investigate the elastic contact of rough spheres. Synthetic rough surfaces with controllable spectra were used to identify individual asperities, their locations and curvatures. The deterministic analysis enables to capture both particular deformation modes of individual rough surfaces and also statistical deformation regimes, which involve averaging over a big number of roughness realizations. Two regimes of contact area growth were identified: the Hertzian regime at light loads at the scale of a single asperity, and the linear regime at higher loads involving multiple contacting asperities. The transition between the regimes occurs at the load which depends on the second and the fourth spectral moments. It is shown that at light indentation the radius of circumference delimiting the contact area is always considerably larger than Hertzian contact radius. Therefore, it suggests that there is no scale separation in contact problems at light loads. In particular, the geometrical shape cannot be considered separately from the surface roughness at least for approaching greater than one standard roughness deviation.


1969 ◽  
Vol 91 (4) ◽  
pp. 732-737 ◽  
Author(s):  
Richard C. Drutowski

The contact of a hard sphere with a flat elastomer is examined both analytically and experimentally when adhesive stresses are present. Use of a transparent spherical indenter enables continuous measurement of contact size while the samples are pulled apart. For any combination of load and contact area, the superposition of a Hertz and a Boussinesq stress distribution separates the contact into a circular zone under compression and an outer annulus under tension. During separation, while the contact size decreases and the tensile annulus becomes a larger percentage of the total contact, the average tensile stress remains constant. This average adhesive is a material property which is easily measured and is shown to be invariant with respect to indenter radius and initial contact pressure. An application of this analysis to opaque indenters is described.


2002 ◽  
Vol 124 (3) ◽  
pp. 595-599 ◽  
Author(s):  
Bo Jacobson

It is today possible to manufacture so smooth surfaces that they can elastically conform totally to each other over the whole Hertzian contact area. For pure rolling lubrication such surfaces only need an oil film of molecular dimensions to get total separation. When the rolling motion is combined with sliding, the pressure fluctuations inside the Hertzian contact redistribute the oil and make metal-to-metal contact possible. The redistribution velocity is a function of the slip rate S and the number of asperities N from the inlet to the outlet of the Hertzian contact area. The asperity top oil film thickness decreases with a factor of the order 2NS going from the inlet to the outlet of the Hertzian contact.


Author(s):  
Robert S. Pierce ◽  
Martin L. Tanaka ◽  
Candace Ireton ◽  
Zachary Church ◽  
David Hudson

Abstract Hypermobile-type Ehlers–Danlos Syndrome (hEDS) is characterized by connective tissue laxity resulting in excessive joint mobility. This can lead to instability of the cervical spine resulting in spinal cord compression and neck pain. People with hEDS often utilize commercially available cervical collars to provide head support, but these devices are not well-suited for this population. This work describes the development of a novel head support designed specifically to meet the needs of people with hEDS. The head support was developed using the principles of human-centered design, in which the end user is an active participant in the design process. People with hEDS were interviewed to identify limitations of existing support devices and desirable features of a new device. Input from the interviews was combined with structured design methods to generate initial designs. A prototype of a selected initial design was developed and evaluated by a person with hEDS. Feedback from this evaluation was incorporated into a second-generation design. This improved design stabilizes and supports the head while flexing to allow limited motion. It has an open, well-ventilated structure, and can be worn under clothes. By including end users in the design process, making effective use of computer-aided design and additive manufacturing processes, and gaining feedback through rapid prototyping, the product development process has been accelerated and focused on the needs of the end-user. Future work will continue to include people with hEDS as part of the design team to develop a high-functioning, affordable head support.


Author(s):  
J. P. Pascal ◽  
Khaled E. Zaazaa

For the wheel/rail contact problem, the Hertz theory for two elastic bodies in contact is commonly used to determine the shape and dimensions of the contact area and the local deformation of the wheel and rail surfaces at the contact region. The shape of the contact area is assumed to be elliptical. The ratio of the contact ellipse semi-axes is equal to the ratio of two non-dimensional contact area coefficients, known as m and n coefficients. Hertz presented a table of these two coefficients, determined as a function of an angular parameter, θ. Most railroad vehicle dynamic codes use this table with online interpolation to determine the contact ellipse semi-axes. Recently, it was found that this original table may be too coarse, and that more data points are needed within the table for solving the wheel/rail contact accurately. This paper discusses the effect of the accuracy of the m and n coefficients in solving for wheel/rail contact, and demonstrates this effect with two numerical examples that show the resulting differences in the dynamic behavior of railroad vehicles dependent on this accuracy. A new table with more data points is presented that is recommended for use in railroad vehicle dynamic codes that employ the Hertzian contact for solving the wheel/rail contact interaction. This modified table was originally derived by Jean-Pierre Pascal as a part of collaborative research between the Federal Railroad Administration (FRA) and the French Ministry of Transportation.


Author(s):  
Abdelrahim S. Abeidi ◽  
Nicola Bosso ◽  
Antonio Gugliotta ◽  
Aurelio Soma`

The work describes a method to predict the evolution of the wheel profile of a railway vehicle, depending on the load history acting on the wheelset. The method is based on the determination of the wear on the contact area, which is divided into finite elements according to the strip theory. For each element, in presence of slip, the amount of material loss is evaluated depending on the local value of tangential force and creepage (the meaning of creepage is assumed according to the definition given in [14], [15], [16] as the ratio between the sliding velocity and the tangential rolling velocity). The empirical relation is evaluated according to results of experimental test obtained from literature. The wear is calculated for the entire contact area superimposing the contribution of each element. The motion of the wheelset in lateral direction causes a motion of the contact patch along the profile. Sequentially, the contact area will acquire a different contact shape and stress distribution. The shape of the worn profile depends on both the load condition and the motion of the wheelset with respect to the track. This profile can be obtained from the new one by subtracting at each time step the material removed from the contact area. This procedure is simple, but requires variable profiles for each time step, and is not efficient in computational terms. The strategy proposed here by the authors, is to consider finite periods obtained superimposing several revolution of the wheelset. The worn profile is evaluated in a single step from the cumulative of damage of an entire period. The limitation of this method consists in the different behavior of a wheelset with worn profile respect to a wheelset with new ones, and therefore produces different wear. It is necessary to determine an optimal value for the period to be used to re-evaluate the profile shape, in order to minimize the difference in the predicted shape itself. The method is applied to a suspended wheelset, running on a simulated test track, with S1002/UIC60 profiles. Different periods of re-evaluation of the profiles are considered in order to demonstrate the influence of this parameter.


Sign in / Sign up

Export Citation Format

Share Document