scholarly journals Hydrologic Setting Dictates the Sensitivity of Ecosystem Metabolism to Climate Variability in Lakes

Ecosystems ◽  
2021 ◽  
Author(s):  
Isabella A. Oleksy ◽  
Stuart E. Jones ◽  
Christopher T. Solomon

AbstractGlobal change is influencing production and respiration in ecosystems across the globe. Lakes in particular are changing in response to climatic variability and cultural eutrophication, resulting in changes in ecosystem metabolism. Although the primary drivers of production and respiration such as the availability of nutrients, light, and carbon are well known, heterogeneity in hydrologic setting (for example, hydrological connectivity, morphometry, and residence) across and within regions may lead to highly variable responses to the same drivers of change, complicating our efforts to predict these responses. We explored how differences in hydrologic setting among lakes influenced spatial and inter annual variability in ecosystem metabolism, using high-frequency oxygen sensor data from 11 lakes over 8 years. Trends in mean metabolic rates of lakes generally followed gradients of nutrient and carbon concentrations, which were lowest in seepage lakes, followed by drainage lakes, and higher in bog lakes. We found that while ecosystem respiration (ER) was consistently higher in wet years in all hydrologic settings, gross primary production (GPP) only increased in tandem in drainage lakes. However, interannual rates of ER and GPP were relatively stable in drainage lakes, in contrast to seepage and bog lakes which had coefficients of variation in metabolism between 22–32%. We explored how the geospatial context of lakes, including hydrologic residence time, watershed area to lake area, and landscape position influenced the sensitivity of individual lake responses to climatic variation. We propose a conceptual framework to help steer future investigations of how hydrologic setting mediates the response of metabolism to climatic variability.

2020 ◽  
Author(s):  
Pier Luigi Segatto ◽  
Tom J. Battin ◽  
Enrico Bertuzzo

<p>Inland waters are major contributors to the global carbon cycle. Nowadays, new sensor technology has changed the way we study ecosystem metabolism in streams. We are able to produce long-term time series of gross primary production (GPP) and ecosystem respiration (ER) to infer drivers of the stream ecosystem metabolic regime and its seasonal timing. Despite big data availability, most studies are limited to individual stream reaches and do not allow the appreciation of metabolic regimes at the scale of entire networks, which, however, would be fundamental to properly assess the relevance of metabolic fluxes within streams and rivers for carbon cycling at the regional and global scale. Machine learning (ML) has great potential in this direction. Firstly, ML could be used to extrapolate both in time and space heterogeneous forcings (e.g., streamwater temperature (T) and photosynthetic active radiation (PAR)) required to run a process-based model for reach-scale metabolism to the scale of an entire stream network. Secondly, the same procedure could be applied to reach-scale estimates of ecosystem metabolism to check whether available data contain enough information to explain the network scale variability. In this study, we used Random Forest to predict patterns of environmental forcings (T and PAR) and stream metabolism (GPP and ER) at the scale of an entire stream network. We used available high-frequency measurements of T and PAR, estimates of ecosystem metabolism and major proximal controls (e.g., incident light, discharge, stream-bed slope, drainage area, water level,  air temperature) from twelve reaches within the Ybbs River network (Austria) and explicitly trained our Random Forests by integrating distal factors, namely:  vegetation type, canopy cover, hydro-geomorphic properties, light,  precipitation, and other climatic variables. We designed two different training setups to assess spatial and temporal predicting model capabilities, respectively. This approach allowed us to reliably infer the target variables (T, PAR, GPP, and ER) on annual basis across a stream network, to filter the most important predictors, to assess the relative contribution of the metabolic fluxes from small to large streams, to estimate annual metabolic budgets at different spatial scales and to provide empirical evidence for long-standing theory predicting shifts of ecosystem metabolism along the stream continuum. Finally, we estimated autochthonous and allochthonous respiration for the entire stream network, which is crucial to integrate the role of ecosystem processes for the carbon cycle.</p>


2016 ◽  
Author(s):  
Benjamin Kupilas ◽  
Daniel Hering ◽  
Armin W. Lorenz ◽  
Christoph Knuth ◽  
Björn Gücker

Abstract. Both, ecosystem structure and functioning determine ecosystem status and are important for the provision of goods and services to society. However, there is a paucity of research that couples functional measures with assessments of ecosystem structure. In mid-sized and large rivers, effects of restoration on key ecosystem processes, such as ecosystem metabolism, have rarely been addressed and remain poorly understood. We compared three reaches of the third-order, gravel-bed river Ruhr in Germany: two reaches restored with moderate (R1) and substantial effort (R2) and one upstream degraded reach (D). Hydromorphology, habitat composition and hydrodynamics were assessed. We estimated gross primary production (GPP) and ecosystem respiration (ER) using the one-station open-channel diel dissolved oxygen change method over a 50-day period at the end of each reach. Values for hydromorphological variables increased with restoration intensity (D 


2017 ◽  
Vol 14 (7) ◽  
pp. 1989-2002 ◽  
Author(s):  
Benjamin Kupilas ◽  
Daniel Hering ◽  
Armin W. Lorenz ◽  
Christoph Knuth ◽  
Björn Gücker

Abstract. Both ecosystem structure and functioning determine ecosystem status and are important for the provision of goods and services to society. However, there is a paucity of research that couples functional measures with assessments of ecosystem structure. In mid-sized and large rivers, effects of restoration on key ecosystem processes, such as ecosystem metabolism, have rarely been addressed and remain poorly understood. We compared three reaches of the third-order, gravel-bed river Ruhr in Germany: two reaches restored with moderate (R1) and substantial effort (R2) and one upstream degraded reach (D). Hydromorphology, habitat composition, and hydrodynamics were assessed. We estimated gross primary production (GPP) and ecosystem respiration (ER) using the one-station open-channel diel dissolved oxygen change method over a 50-day period at the end of each reach. Moreover, we estimated metabolic rates of the combined restored reaches (R1 + R2) using the two-station open-channel method. Values for hydromorphological variables increased with restoration intensity (D  <  R1  <  R2). Restored reaches had lower current velocity, higher longitudinal dispersion and larger transient storage zones. However, fractions of median travel time due to transient storage were highest in R1 and lowest in R2, with intermediate values in D. The share of macrophyte cover of total wetted area was highest in R2 and lowest in R1, with intermediate values in D. Station R2 had higher average GPP and ER than R1 and D. The combined restored reaches R1 + R2 also exhibited higher GPP and ER than the degraded upstream river (station D). Restoration increased river autotrophy, as indicated by elevated GPP : ER, and net ecosystem production (NEP) of restored reaches. Temporal patterns of ER closely mirrored those of GPP, pointing to the importance of autochthonous production for ecosystem functioning. In conclusion, high reach-scale restoration effort had considerable effects on river hydrodynamics and ecosystem functioning, which were mainly related to massive stands of macrophytes. High rates of metabolism and the occurrence of dense macrophyte stands may increase the assimilation of dissolved nutrients and the sedimentation of particulate nutrients, thereby positively affecting water quality.


2021 ◽  
Vol 13 (4) ◽  
pp. 818
Author(s):  
Sofia Junttila ◽  
Julia Kelly ◽  
Natascha Kljun ◽  
Mika Aurela ◽  
Leif Klemedtsson ◽  
...  

Peatlands play an important role in the global carbon cycle as they contain a large soil carbon stock. However, current climate change could potentially shift peatlands from being carbon sinks to carbon sources. Remote sensing methods provide an opportunity to monitor carbon dioxide (CO2) exchange in peatland ecosystems at large scales under these changing conditions. In this study, we developed empirical models of the CO2 balance (net ecosystem exchange, NEE), gross primary production (GPP), and ecosystem respiration (ER) that could be used for upscaling CO2 fluxes with remotely sensed data. Two to three years of eddy covariance (EC) data from five peatlands in Sweden and Finland were compared to modelled NEE, GPP and ER based on vegetation indices from 10 m resolution Sentinel-2 MSI and land surface temperature from 1 km resolution MODIS data. To ensure a precise match between the EC data and the Sentinel-2 observations, a footprint model was applied to derive footprint-weighted daily means of the vegetation indices. Average model parameters for all sites were acquired with a leave-one-out-cross-validation procedure. Both the GPP and the ER models gave high agreement with the EC-derived fluxes (R2 = 0.70 and 0.56, NRMSE = 14% and 15%, respectively). The performance of the NEE model was weaker (average R2 = 0.36 and NRMSE = 13%). Our findings demonstrate that using optical and thermal satellite sensor data is a feasible method for upscaling the GPP and ER of northern boreal peatlands, although further studies are needed to investigate the sources of the unexplained spatial and temporal variation of the CO2 fluxes.


Environments ◽  
2021 ◽  
Vol 8 (3) ◽  
pp. 19
Author(s):  
Daniel J. Hornbach

Climate change is likely to have large impacts on freshwater biodiversity and ecosystem function, especially in cold-water streams. Ecosystem metabolism is affected by water temperature and discharge, both of which are expected to be affected by climate change and, thus, require long-term monitoring to assess alterations in stream function. This study examined ecosystem metabolism in two branches of a trout stream in Minnesota, USA over 3 years. One branch was warmer, allowing the examination of elevated temperature on metabolism. Dissolved oxygen levels were assessed every 10 min from spring through fall in 2017–2019. Gross primary production (GPP) was higher in the colder branch in all years. GPP in both branches was highest before leaf-out in the spring. Ecosystem respiration (ER) was greater in the warmer stream in two of three years. Both streams were heterotrophic in all years (net ecosystem production—NEP < 0). There were significant effects of temperature and light on GPP, ER, and NEP. Stream discharge had a significant impact on all GPP, ER, and NEP in the colder stream, but only on ER and NEP in the warmer stream. This study indicated that the impacts of temperature, light, and discharge differ among years, and, at least at the local scale, may not follow expected patterns.


Water ◽  
2018 ◽  
Vol 10 (9) ◽  
pp. 1136 ◽  
Author(s):  
María Alfonso ◽  
Andrea Brendel ◽  
Alejandro Vitale ◽  
Carina Seitz ◽  
María Piccolo ◽  
...  

Understanding the drivers and how they affect ecosystem metabolism is essential for developing effective management policy and plans. In this study, net ecosystem production (NEP), ecosystem respiration (R), and gross primary production (GPP) rates were estimated in relation to physicochemical, hydrological, and meteorological variables in La Salada (LS) and Sauce Grande (SG), two shallow lakes located in an important agricultural region with water management. LS is a mesosaline, mesotrophic-eutrophic lake, whereas SG is a hyposaline and eutrophic lake. GPP and R showed daily and seasonal variations, with R exceeding GPP during most of the study period in both lakes. Net heterotrophic conditions prevailed during the study period (NEP LS: −1.1 mmol O2 m−2 day−1 and NEP SG: −1.25 mmol O2 m−2 day−1). From data analysis, the temperature, wind speed, and lake volume are the main drivers of ecosystem metabolism for both lakes. Despite the significant differences between the two lakes, the NEP values were similar. The different hydrological characteristics (endorheic vs. flushing lake) were crucial in explaining why the two different systems presented similar ecosystem metabolic rates, emphasizing the importance of water management.


2011 ◽  
Vol 68 (5) ◽  
pp. 768-780 ◽  
Author(s):  
Jeng-Wei Tsai ◽  
Timothy K. Kratz ◽  
Paul C. Hanson ◽  
Nobuaki Kimura ◽  
Wen-Cheng Liu ◽  
...  

We studied how typhoon strength affects the daily dynamics of ecosystem metabolism of a subtropical alpine lake in Taiwan. We identified proximal agents of typhoon disturbance and assessed the resistance (the extent of change induced by a disturbance) and resilience (the rate of recovery after a disturbance) of lake metabolism to them. Gross primary production (GPP), ecosystem respiration (ER), and net ecosystem production were estimated from high-frequency dissolved oxygen data provided by an instrumented buoy. Typhoons resulted in significantly lower GPP (3%–81% decrease), and higher ER (7%–828% increase) compared with immediately before the events, and thus the lake became more heterotrophic (28%–852% increase in heterotrophy). The resistance and resilience of lake metabolism depended on the intensity of the typhoon. Smaller typhoons (with average daily accumulated precipitation (ADAP) < 200 mm·day–1) had greater effects on lake metabolism than medium (ADAP = 200–350 mm·day–1) and large (ADAP > 350 mm·day–1) typhoons. However, metabolism also recovered more quickly after smaller typhoons than after medium or larger typhoons. Typhoon effects on ecosystem metabolism is likely mediated by the magnitude and duration of typhoon-induced changes in lake mixing, the quantity and quality of dissolved organic carbon, and the biomass of primary producers.


Ecosystems ◽  
2021 ◽  
Author(s):  
Pier Luigi Segatto ◽  
Tom J. Battin ◽  
Enrico Bertuzzo

AbstractStreams and rivers form dense networks that drain the terrestrial landscape and are relevant for biodiversity dynamics, ecosystem functioning, and transport and transformation of carbon. Yet, resolving in both space and time gross primary production (GPP), ecosystem respiration (ER) and net ecosystem production (NEP) at the scale of entire stream networks has been elusive so far. Here, combining Random Forest (RF) with time series of sensor data in 12 reach sites, we predicted annual regimes of GPP, ER, and NEP in 292 individual stream reaches and disclosed properties emerging from the network they form. We further predicted available light and thermal regimes for the entire network and expanded the library of stream metabolism predictors. We found that the annual network-scale metabolism was heterotrophic yet with a clear peak of autotrophy in spring. In agreement with the River Continuum Concept, small headwaters and larger downstream reaches contributed 16% and 60%, respectively, to the annual network-scale GPP. Our results suggest that ER rather than GPP drives the metabolic stability at the network scale, which is likely attributable to the buffering function of the streambed for ER, while GPP is more susceptible to flow-induced disturbance and fluctuations in light availability. Furthermore, we found large terrestrial subsidies fueling ER, pointing to an unexpectedly high network-scale level of heterotrophy, otherwise masked by simply considering reach-scale NEP estimations. Our machine learning approach sheds new light on the spatiotemporal dynamics of ecosystem metabolism at the network scale, which is a prerequisite to integrate aquatic and terrestrial carbon cycling at relevant scales.


2018 ◽  
Vol 15 (1) ◽  
pp. 263-278 ◽  
Author(s):  
Ana López-Ballesteros ◽  
Cecilio Oyonarte ◽  
Andrew S. Kowalski ◽  
Penélope Serrano-Ortiz ◽  
Enrique P. Sánchez-Cañete ◽  
...  

Abstract. Currently, drylands occupy more than one-third of the global terrestrial surface and are recognized as areas vulnerable to land degradation. The concept of land degradation stems from the loss of an ecosystem's biological productivity due to long-term loss of natural vegetation or depletion of soil nutrients. Drylands' key role in the global carbon (C) balance has been recently demonstrated, but the effects of land degradation on C sequestration by these ecosystems still need to be investigated. In the present study, we compared net C and water vapor fluxes, together with satellite, meteorological and vadose zone (CO2, water content and temperature) measurements, between two nearby (∼ 23 km) experimental sites representing “natural” (i.e., site of reference) and “degraded” grazed semiarid grasslands. We utilized data acquired over 6 years from two eddy covariance stations located in southeastern Spain with highly variable precipitation magnitude and distribution. Results show a striking difference in the annual C balances with an average net CO2 exchange of 196 ± 40 (C release) and −23 ± 2 g C m−2 yr−1 (C fixation) for the degraded and natural sites, respectively. At the seasonal scale, differing patterns in net CO2 fluxes were detected over both growing and dry seasons. As expected, during the growing seasons, greater net C uptake over longer periods was observed at the natural site. However, a much greater net C release, probably derived from subterranean ventilation, was measured at the degraded site during drought periods. After subtracting the nonbiological CO2 flux from net CO2 exchange, flux partitioning results point out that, during the 6 years of study, gross primary production, ecosystem respiration and water use efficiency were, on average, 9, 2 and 10 times higher, respectively, at the natural site versus the degraded site. We also tested differences in all monitored meteorological and soil variables and CO2 at 1.50 m belowground was the variable showing the greatest intersite difference, with ∼ 1000 ppm higher at the degraded site. Thus, we believe that subterranean ventilation of this vadose zone CO2, previously observed at both sites, partly drives the differences in C dynamics between them, especially during the dry season. It may be due to enhanced subsoil–atmosphere interconnectivity at the degraded site.


Sign in / Sign up

Export Citation Format

Share Document