scholarly journals Permeability of rock discontinuities and faults in the Triassic Sherwood Sandstone Group (UK): insights for management of fluvio-aeolian aquifers worldwide

2019 ◽  
Vol 27 (8) ◽  
pp. 2835-2855 ◽  
Author(s):  
Giacomo Medici ◽  
L. Jared West ◽  
Nigel P. Mountney ◽  
Michael Welch

Abstract Fluvio-aeolian sedimentary successions host groundwater aquifers at shallow depths (<~0.15 km), which overlie geothermal and shale-gas reservoirs, and nuclear waste repositories at intermediate depths (~0.15–2.0 km). Additionally, such deposits represent petroleum reservoirs at greater depths (~2.0–4.0 km). The need to improve conceptual understanding of the hydraulic behaviour of fluvial-aeolian sandstone successions over a large depth interval (~0–4 km) is important for socio-economic reasons. Thus, the hydraulic properties of the Triassic Sherwood Sandstone aquifer in the UK have been reviewed and compared to similar fluvio-aeolian successions. The ratio between well-scale and core-plug-scale permeability (Kwell-test/Kcore-plug) acts as a proxy for the relative importance of fracture versus intergranular flow. This ratio (which typically varies from ~2 to 100) indicates significant contribution of fractures to flow at relatively shallow depths (<~0.15 km). Here, permeability development is controlled by dissolution of calcite-dolomite in correspondence of fractures. The observed ratio (Kwell-test/Kcore-plug) decreases with depth, approaching unity, indicating that intergranular flow dominates at ~1 km depth. At depths ≥ ~1 km, dissolution of carbonate cement by rock alteration due to groundwater flow is absent and fractures are closed. Aeolian and fluvial deposits behave differently in proximity to normal faults in the Sherwood Sandstone aquifer. Deformation bands in aeolian dune deposits strongly compartmentalize this aquifer. The hydro-structural properties of fluvio-aeolian deposits are also controlled by mineralogy in fault zones. A relative abundance of quartz vs. feldspar and clays in aeolian sandstones favours development of low-permeability deformation bands.

2019 ◽  
Vol 89 (10) ◽  
pp. 1055-1073 ◽  
Author(s):  
Nicolaas Molenaar ◽  
Marita Felder

ABSTRACT Dolomite is a common and volumetrically important mineral in many siliciclastic sandstones, including Permian Rotliegend sandstones (the Slochteren Formation). These sandstones form extensive gas reservoirs in the Southern Permian Basin in the Netherlands, Germany, Poland, and the UK. The reservoir quality of these sandstones is negatively influenced by the content and distribution of dolomite. The origin and the stratigraphic distribution of the dolomite is not yet fully understood. The aim of this study is to identify the origin of carbonate. The main methods used to achieve those aims are a combination of thin-section petrography, scanning electron microscopy (SEM and EDX), and XRD analyses. The present study shows that the typical dispersed occurrence of the dolomite is a consequence of dispersed detrital carbonate grains that served both as nuclei and source for authigenic dolomite cement. The dolomite cement formed syntaxial outgrowths and overgrowths around detrital carbonate grains. The study also shows that dolomite cement, often in combination with ankerite and siderite, precipitated during burial after mechanical compaction. Most of the carbonate grains consisted of dolomite before deposition. The carbonate grains were affected by compaction and pressure dissolution, and commonly have no well-defined outlines anymore. The distribution of dolomite cement in the Rotliegend sandstones was controlled by the presence of stable carbonate grains. Due to the restricted and variable content of carbonate grains and their dispersed occurrence, the cement is also dispersed and the degree of cementation heterogeneous. Our findings have important implications on diagenesis modeling. The presence of detrital carbonate excludes the need for external supply by any large-scale advective flow of diagenetic fluids. By knowing that the carbonate source is local and related to detrital grains instead of being externally derived from an unknown source, the presence of carbonate cement can be linked to a paleogeographic and sedimentological model.


2022 ◽  
Author(s):  
Rinat Lukmanov ◽  
Said Jabri ◽  
Ehab Ibrahim

Abstract The tight gas reservoirs of Haima Supergroup provide the majority of gas production in the Sultanate of Oman. The paper discusses a possibility of using the anomalies from natural radioactivity to evaluate the fracture height for complex tight gas in mature fields of Oman. The standard industry practice is adding radioactive isotopes to the proppant. Spectral Gamma Ray log is used to determine near wellbore traced proppant placement. Spectral Noise log in combination with Production logs helps to identify the active fractures contributing to production. These methods complement each other, but they are obviously associated with costs. Hence, majority of wells are fracced without tracers or any other fracture height diagnostics. However, in several brown fields, an alternative approach to identify fracture height has been developed which provides fit-for-purpose results. It is based on the analysis of naturally occurring radioactive minerals (NORM) precipitation. The anomalies were observed in the many gas reservoirs even in cases when tracers were not used. At certain conditions, these anomalies can be used to characterize fracture propagation and optimize future wells hydraulic Fracture design. A high number of PLTs and well test information were analyzed. Since tight formations normally don't produce without fracturing, radioactive anomalies flag the contributing intervals and hence fracture propagation. The main element of analysis procedure is related to that fact that if no tracers applied, the discrepancy between normalized Open Hole Gamma Ray and Gamma Ray taken during PLT after 6-12 months of production can be used instead to establish fracture height. This method cannot be applied for immediate interpretation of fracture propagation because time is required to precipitate NORM and using the anomalies concept. The advantage of this method is that it can be used in some fields to estimate the frac effectiveness of wells without artificial tracers. It is normally assumed that the Natural radioactivity anomalies appear mainly due to co-production of the formation water. However, in the fields of interest the anomalies appear in wells producing only gas and condensate. This observation provides an opportunity for active fracture height determination at minimum cost.


Solid Earth ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 141-170
Author(s):  
Kathryn E. Elphick ◽  
Craig R. Sloss ◽  
Klaus Regenauer-Lieb ◽  
Christoph E. Schrank

Abstract. We analyse deformation bands related to horizontal contraction with an intermittent period of horizontal extension in Miocene turbidites of the Whakataki Formation south of Castlepoint, Wairarapa, North Island, New Zealand. In the Whakataki Formation, three sets of cataclastic deformation bands are identified: (1) normal-sense compactional shear bands (CSBs), (2) reverse-sense CSBs, and (3) reverse-sense shear-enhanced compaction bands (SECBs). During extension, CSBs are associated with normal faults. When propagating through clay-rich interbeds, extensional bands are characterised by clay smear and grain size reduction. During contraction, sandstone-dominated sequences host SECBs, and rare CSBs, that are generally distributed in pervasive patterns. A quantitative spacing analysis shows that most outcrops are characterised by mixed spatial distributions of deformation bands, interpreted as a consequence of overprint due to progressive deformation or distinct multiple generations of deformation bands from different deformation phases. As many deformation bands are parallel to adjacent juvenile normal faults and reverse faults, bands are likely precursors to faults. With progressive deformation, the linkage of distributed deformation bands across sedimentary beds occurs to form through-going faults. During this process, bands associated with the wall-, tip-, and interaction-damage zones overprint earlier distributions resulting in complex spatial patterns. Regularly spaced bands are pervasively distributed when far away from faults. Microstructural analysis shows that all deformation bands form by inelastic pore collapse and grain crushing with an absolute reduction in porosity relative to the host rock between 5 % and 14 %. Hence, deformation bands likely act as fluid flow barriers. Faults and their associated damage zones exhibit a spacing of 9 m on the scale of 10 km and are more commonly observed in areas characterised by higher mudstone-to-sandstone ratios. As a result, extensive clay smear is common in these faults, enhancing the sealing capacity of faults. Therefore, the formation of deformation bands and faults leads to progressive flow compartmentalisation from the scale of 9 m down to about 10 cm – the typical spacing of distributed, regularly spaced deformation bands.


2021 ◽  
Author(s):  
Hengrong Zhang ◽  
Lizhi Xiao ◽  
Wensheng Wu ◽  
Xinyue Fu ◽  
Shenglin He

Abstract The Yinggehai basin is located in the western part of the South China Sea, the burial depth of the Huangliu and Meishan formations in the target layer is close to 4000 meters, the formation temperature is close to 200 degrees Celsius, and the formation pressure is up to 100 MPa. The reservoir is characterized by low porosity-ultra-low permeability, heavy carbonate cement, complex CO2 content, this leads to complex neutron and density logging effects. The solubility of CO2 Above CH4, the solubility change with temperature and pressure is different from CH4, which makes it difficult to identify the CO2 gas layer. In this paper, based on the difference in the physical characteristics of CO2 and CH4, the Boltzmann equation combined with MCNP software was used to simulate the neutron and density logging responses under different CO2 saturations. Environmental factors such as temperature and pressure, carbonate cement, mud content and pores were studied To measure the effect of logging response, the LM inversion method is used to jointly invert CO2 saturation of density and neutron logs. The purpose of the inversion is to reduce the non-uniqueness of the evaluation of porosity and CO2 saturation. By introducing the Levenberg-Marquardt (LM) method, the neutron logging response equation of the porosity, argillaceous content, CO2, CH4 in the rock and the corresponding temperature and pressure is solved, and also the response equation of above parameters to density logging, where porosity and CO2 content are the key parameters, and the calculation results prove the effectiveness of the method by comparing the sampling data. The results show that the accuracy of the estimated CO2 saturation is increased by 10% compared with the conventional interpretation method, and the new simulation method improves the calculation speed several times compared to the MCNP software. The joint inversion method has been successfully applied to field data, which has greatly improved the saturation evaluation results of traditional logging interpretation methods, can be extended to other fields of nuclear logging simulation and inversion.


2020 ◽  
Vol 142 (8) ◽  
Author(s):  
Babak Bahrami ◽  
Ali Sadatshojaie ◽  
David A Wood

Abstract The importance of evaluating wellbore stability in analyzing and estimating the efficiency of drilling directionally into oil and gas reservoirs is well known. Geomechanical data and failure criterion can be used to model and control rock mass behavior in response to the stresses imposed upon it. Understanding and managing the risks of rock mass deformation significantly improve operational processes such as wellbore stability, sand production, and hydraulic fracturing. The modified Lade failure criterion is established as the most precise failure criterion based on previous studies. By combining it with tensions around the wellbore, a novel relationship is derived for determining the stable mud window. To investigate the accuracy of the new relationship, two geomechanical models (neural network and empirical correlations) for a one-directional wellbore are developed and their performance compared with two other failure criteria (Hoek–Brown and Mogi–Coulomb). The geomechanical parameters (Young’s modulus, Poisson ratio, uniaxial compressive strength, and internal friction coefficient) obtained from the models show that neural network configurations perform better than those built with the empirical equation. The horizontal minimum and maximum stress values across the depth interval of interest (2347–2500 m) are established for a case study reservoir. The model provides an accurate prediction of wellbore instability when applying the modified Lade criterion; the stable mud weight is derived with improved precision compared to the other failure criteria evaluated. A key advantage of the developed method is that it does not require input knowledge of the reservoir’s structural boundaries (e.g., the fault regime) or core test data.


2016 ◽  
Author(s):  
David K. Smythe

Abstract. North American shale basins differ from their European counterparts in that the latter are one to two orders of magnitude smaller in area, but correspondingly thicker, and are cut or bounded by normal faults penetrating from the shale to the surface. There is thus an inherent risk of groundwater resource contamination via these faults during or after unconventional resource appraisal and development. US shale exploration experience cannot simply be transferred to the UK. The Bowland Basin, with 1900 m of Lower Carboniferous shale, is in the vanguard of UK shale gas development. A vertical appraisal well to test the shale by hydraulic fracturing (fracking), the first such in the UK, triggered earthquakes. Re-interpretation of the 3D seismic reflection data, and independently the well casing deformation data, both show that the well was drilled through the earthquake fault, and did not avoid it, as concluded by the exploration operator. Faulting in this thick shale is evidently difficult to recognise. The Weald Basin is a shallower Upper Jurassic unconventional oil play with stratigraphic similarities to the Bakken play of the Williston Basin, USA. Two Weald licensees have drilled, or have applied to drill, horizontal appraisal wells based on inadequate 2D seismic reflection data coverage. I show, using the data from the one horizontal well drilled to date, that one operator failed identify two small but significant through-going normal faults. The other operator portrayed a seismic line as an example of fault-free structure, but faulting had been smeared out by reprocessing. The case histories presented show that: (1) UK shale exploration to date is characterised by a low degree of technical competence, and (2) regulation, which is divided between four separate authorities, is not up to the task. If UK shale is to be exploited safely: (1) more sophisticated seismic imaging methods need to be developed and applied to both basins, to identify faults in shale with throws as small as 4–5 m, and (2) the current lax and inadequate regulatory regime must be overhauled, unified, and tightened up.


2020 ◽  
Author(s):  
Anders Bjørn Møller ◽  
Goswin Johann Hechrath ◽  
Cecilie Hermansen ◽  
Trine Nørgaard ◽  
Maria Knadel ◽  
...  

&lt;p&gt;Phosphorus (P) is one of the most important plant nutrients, and farmers regularly apply P as mineral fertilizer and with animal manures. Typically, reactions with amorphous aluminum and iron oxides or carbonates retain P in the soil. However, if P additions exceed the soil&amp;#8217;s ability to bind them, P may leach from soil to surface waters, where it causes eutrophication. The phosphorus sorption capacity (PSC) is thus an inherent soil property that, when related to bound P, can describe the P saturation of the soil. Detailed knowledge of the spatial distribution of the PSC is therefore important information for assessing the risk of P leaching from agricultural land.&lt;/p&gt;&lt;p&gt;In weakly acidic soils predominant in Denmark, the PSC depends mainly on the oxalate-extractable contents of aluminum and iron. In this study, we aimed to map PSC in four depth intervals (0 &amp;#8211; 25; 25 &amp;#8211; 50; 50 &amp;#8211; 75; 75 &amp;#8211; 100 cm) for Denmark using measurements of oxalate-extractable aluminum and iron from 1,623 locations.&lt;/p&gt;&lt;p&gt;We mapped both elements using quantile regression forests. Predictions of oxalate-extractable aluminum had a weighted RMSE of 13.9 mmol kg&lt;sup&gt;-1&lt;/sup&gt;. For oxalate-extractable iron, weighted RMSE was 33.5 mmol kg&lt;sup&gt;-1&lt;/sup&gt;.&lt;/p&gt;&lt;p&gt;We included depth as a covariate and therefore trained one model for each element. For each element in each depth interval, we predicted the mean prediction value as well as 100 quantiles ranging from 0.5% to 99.5% in 1% intervals. The maps had a 30.4 m resolution. We then calculated PSC by convoluting the prediction quantiles of the two elements, using every combination of quantiles, in order to obtain the prediction uncertainty for PSC.&lt;/p&gt;&lt;p&gt;Oxalate-extractable aluminum was roughly normal distributed, while oxalate-extractable iron had a large positive skew. The age and origin of the parent material had a large effect on oxalate-extractable aluminum, and soil-forming processes such as weathering and podzolization had clear effects on the distribution in depth. Meanwhile, organic matter, texture and wetland processes were the main factors affecting oxalate-extractable iron, so much so that they obscured any trends with depth.&lt;/p&gt;&lt;p&gt;The weighted RMSE of the predicted PSC was 19.1 mmol kg&lt;sup&gt;-1&lt;/sup&gt;. PSC was highest in wetland areas and lowest in young upland deposits, such as aeolian deposits and the loamy Weichselian moraines of eastern Denmark. The sandy glaciofluvial plains and Saalian moraines of western Denmark had intermediate PSC. In most cases, PSC was highest in the top soil, but in the sandy soils of western Denmark, PSC was highest in the depth interval 25 &amp;#8211; 50 cm due to podzolization.&lt;/p&gt;


Sign in / Sign up

Export Citation Format

Share Document