scholarly journals Correction to: Understanding the effects of dietary components on the gut microbiome and human health

Author(s):  
Bryna Rackerby ◽  
Hyun Jung Kim ◽  
David C. Dallas ◽  
Si Hong Park

The article “Understanding the effects of dietary components on the gut microbiome and human health”, written by Bryna Rackerby, Hyun Jung Kim, David C. Dallas, Si Hong Park, was originally published Online First without Open Access.

2019 ◽  
Vol 26 (19) ◽  
pp. 3567-3583 ◽  
Author(s):  
Maria De Angelis ◽  
Gabriella Garruti ◽  
Fabio Minervini ◽  
Leonilde Bonfrate ◽  
Piero Portincasa ◽  
...  

Gut microbiota, the largest symbiont community hosted in human organism, is emerging as a pivotal player in the relationship between dietary habits and health. Oral and, especially, intestinal microbes metabolize dietary components, affecting human health by producing harmful or beneficial metabolites, which are involved in the incidence and progression of several intestinal related and non-related diseases. Habitual diet (Western, Agrarian and Mediterranean omnivore diets, vegetarian, vegan and gluten-free diets) drives the composition of the gut microbiota and metabolome. Within the dietary components, polymers (mainly fibers, proteins, fat and polyphenols) that are not hydrolyzed by human enzymes seem to be the main leads of the metabolic pathways of gut microbiota, which in turn directly influence the human metabolome. Specific relationships between diet and microbes, microbes and metabolites, microbes and immune functions and microbes and/or their metabolites and some human diseases are being established. Dietary treatments with fibers are the most effective to benefit the metabolome profile, by improving the synthesis of short chain fatty acids and decreasing the level of molecules, such as p-cresyl sulfate, indoxyl sulfate and trimethylamine N-oxide, involved in disease state. Based on the axis diet-microbiota-health, this review aims at describing the most recent knowledge oriented towards a profitable use of diet to provide benefits to human health, both directly and indirectly, through the activity of gut microbiota.


Gut Microbes ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 1-18
Author(s):  
Joanna K Coker ◽  
Oriane Moyne ◽  
Dmitry A. Rodionov ◽  
Karsten Zengler

2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Guojun Wu ◽  
Naisi Zhao ◽  
Chenhong Zhang ◽  
Yan Y. Lam ◽  
Liping Zhao

AbstractTo demonstrate the causative role of gut microbiome in human health and diseases, we first need to identify, via next-generation sequencing, potentially important functional members associated with specific health outcomes and disease phenotypes. However, due to the strain-level genetic complexity of the gut microbiota, microbiome datasets are highly dimensional and highly sparse in nature, making it challenging to identify putative causative agents of a particular disease phenotype. Members of an ecosystem seldomly live independently from each other. Instead, they develop local interactions and form inter-member organizations to influence the ecosystem’s higher-level patterns and functions. In the ecological study of macro-organisms, members are defined as belonging to the same “guild” if they exploit the same class of resources in a similar way or work together as a coherent functional group. Translating the concept of “guild” to the study of gut microbiota, we redefine guild as a group of bacteria that show consistent co-abundant behavior and likely to work together to contribute to the same ecological function. In this opinion article, we discuss how to use guilds as the aggregation unit to reduce dimensionality and sparsity in microbiome-wide association studies for identifying candidate gut bacteria that may causatively contribute to human health and diseases.


RSC Advances ◽  
2021 ◽  
Vol 11 (24) ◽  
pp. 14357-14361
Author(s):  
Teron Haynie ◽  
Shawn Gubler ◽  
Christoph Drees ◽  
Tanner Heaton ◽  
Tanner Mitton ◽  
...  
Keyword(s):  

The roles played by the gut microbiome in human health are increasingly recognized, and the prevalence of specific microorganisms has been correlated with different diseases.


2018 ◽  
Author(s):  
Monica Barone ◽  
Silvia Turroni ◽  
Simone Rampelli ◽  
Matteo Soverini ◽  
Federica D’Amico ◽  
...  

AbstractThe progressive reduction of gut microbiome (GM) biodiversity along human evolutionary history has been found to be particularly exacerbated in Western urban compared to traditional rural populations, and supposed to contribute to the increasing incidence of chronic non-communicable diseases. Together with sanitation, antibiotics and C-section, the Western diets, low in microbiota-accessible carbohydrates (MACs) while rich in industrialized and processed foods, are considered one of the leading causes of this shrinkage. However, significant questions remain unanswered, especially whether high-MAC low-processed diets may be sufficient to recover GM diversity in Western urban populations. Here, we profiled the GM structure of urban Italian subjects adhering to the modern Paleolithic diet (MPD), a dietary pattern featured by high consumption of MACs and low-to-zero intake of refined sugars and processed foods, and compared data with other Italian individuals following a Mediterranean Diet (MD), as well as worldwide traditional hunter-gatherer populations from previous publications. Notwithstanding a strong geography effect on the GM structure, our results show an unexpectedly high degree of GM biodiversity in MPD subjects, which well approximates that of traditional populations. Increasing the consumption of MACs at the expense of refined sugars, and minimizing the intake of processed foods, both hallmarks of the MPD, could be the key to rewild the Western microbiota, counteracting the loss of GM diversity and thus restoring evolutionarily important functionality to our gut for improved human health.


Metabolites ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 717
Author(s):  
Mengni Cui ◽  
Alessia Trimigno ◽  
Josue L. Castro-Mejía ◽  
Søren Reitelseder ◽  
Jacob Bülow ◽  
...  

This study investigated how body mass index (BMI), physical fitness, and blood plasma lipoprotein levels are related to the fecal metabolome in older adults. The fecal metabolome data were acquired using proton nuclear magnetic resonance spectroscopy and gas chromatography–mass spectrometry on 163 healthy older adults (65–80 years old, 80 females and 83 males). Overweight and obese subjects (BMI ≥ 27) showed higher levels of fecal amino acids (AAs) (valine, alanine, and phenylalanine) compared to normal-weight subjects (BMI ≤ 23.5). Adults classified in the high-fitness group displayed slightly lower concentrations of fecal short-chain fatty acids, propionic acid, and AAs (methionine, leucine, glutamic acid, and threonine) compared to the low-fitness group. Subjects with lower levels of cholesterol in low-density lipoprotein particles (LDLchol, ≤2.6 mmol/L) displayed higher fecal levels of valine, glutamic acid, phenylalanine, and lactic acid, while subjects with a higher level of cholesterol in high-density lipoprotein particles (HDLchol, ≥2.1 mmol/L) showed lower fecal concentration of isovaleric acid. The results from this study suggest that the human fecal metabolome, which primarily represents undigested food waste and metabolites produced by the gut microbiome, carries important information about human health and should be closely integrated to other omics data for a better understanding of the role of the gut microbiome and diet on human health and metabolism.


2020 ◽  
Vol 176 (1) ◽  
pp. 1-10 ◽  
Author(s):  
Vicki L Sutherland ◽  
Charlene A McQueen ◽  
Donna Mendrick ◽  
Donna Gulezian ◽  
Carl Cerniglia ◽  
...  

Abstract There is an increasing awareness that the gut microbiome plays a critical role in human health and disease, but mechanistic insights are often lacking. In June 2018, the Health and Environmental Sciences Institute (HESI) held a workshop, “The Gut Microbiome: Markers of Human Health, Drug Efficacy and Xenobiotic Toxicity” (https://hesiglobal.org/event/the-gut-microbiome-workshop) to identify data gaps in determining how gut microbiome alterations may affect human health. Speakers and stakeholders from academia, government, and industry addressed multiple topics including the current science on the gut microbiome, endogenous and exogenous metabolites, biomarkers, and model systems. The workshop presentations and breakout group discussions formed the basis for identifying data gaps and research needs. Two critical issues that emerged were defining the microbial composition and function related to health and developing standards for models, methods and analysis in order to increase the ability to compare and replicate studies. A series of key recommendations were formulated to focus efforts to further understand host-microbiome interactions and the consequences of exposure to xenobiotics as well as identifying biomarkers of microbiome-associated disease and toxicity.


2020 ◽  
Vol 21 (7) ◽  
pp. 2633 ◽  
Author(s):  
Marica Franzago ◽  
Daniele Santurbano ◽  
Ester Vitacolonna ◽  
Liborio Stuppia

Nutrition is a modifiable key factor that is able to interact with both the genome and epigenome to influence human health and fertility. In particular, specific genetic variants can influence the response to dietary components and nutrient requirements, and conversely, the diet itself is able to modulate gene expression. In this context and the era of precision medicine, nutrigenetic and nutrigenomic studies offer significant opportunities to improve the prevention of metabolic disturbances, such as Type 2 diabetes, gestational diabetes, hypertension, and cardiovascular diseases, even with transgenerational effects. The present review takes into account the interactions between diet, genes and human health, and provides an overview of the role of nutrigenetics, nutrigenomics and epigenetics in the prevention of non-communicable diseases. Moreover, we focus our attention on the mechanism of intergenerational or transgenerational transmission of the susceptibility to metabolic disturbances, and underline that the reversibility of epigenetic modifications through dietary intervention could counteract perturbations induced by lifestyle and environmental factors.


Foods ◽  
2020 ◽  
Vol 9 (8) ◽  
pp. 1045
Author(s):  
Yao Guo ◽  
Xiaohan Bian ◽  
Jiali Liu ◽  
Ming Zhu ◽  
Lin Li ◽  
...  

Trillions of bacteria reside in the human gut and they metabolize dietary substances to obtain nutrients and energy while producing metabolites. Therefore, different dietary components could affect human health in various ways through microbial metabolism. Many such metabolites have been shown to affect human physiological activities, including short-chain fatty acids metabolized from carbohydrates; indole, kynurenic acid and para-cresol, metabolized from amino acids; conjugated linoleic acid and linoleic acid, metabolized from lipids. Here, we review the features of these metabolites and summarize the possible molecular mechanisms of their metabolisms by gut microbiota. We discuss the potential roles of these metabolites in health and diseases, and the interactions between host metabolism and the gut microbiota. We also show some of the major dietary patterns around the world and hope this review can provide insights into our eating habits and improve consumers’ health conditions.


Sign in / Sign up

Export Citation Format

Share Document