Twice-daily red and blue light treatment for Candida albicans biofilm matrix development control

2018 ◽  
Vol 34 (3) ◽  
pp. 441-447 ◽  
Author(s):  
Paula Ventura da Silveira ◽  
Beatriz Helena Dias Panariello ◽  
Cecília Atem Gonçalves de Araújo Costa ◽  
Shawn M. Maule ◽  
Shane M. Maule ◽  
...  
Plants ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1420
Author(s):  
Takahiro Ueda ◽  
Miki Murata ◽  
Ken Yokawa

Environmental light conditions influence the biosynthesis of monoterpenes in the mint plant. Cyclic terpenes, such as menthol, menthone, pulegone, and menthofuran, are major odor components synthesized in mint leaves. However, it is unclear how light for cultivation affects the contents of these compounds. Artificial lighting using light-emitting diodes (LEDs) for plant cultivation has the advantage of preferential wavelength control. Here, we monitored monoterpene contents in hydroponically cultivated Japanese mint leaves under blue, red, or far-red wavelengths of LED light supplements. Volatile cyclic monoterpenes, pulegone, menthone, menthol, and menthofuran were quantified using the head-space solid phase microextraction method. As a result, all light wavelengths promoted the biosynthesis of the compounds. Remarkably, two weeks of blue-light supplement increased all compounds: pulegone (362% increase compared to the control), menthofuran (285%), menthone (223%), and menthol (389%). Red light slightly promoted pulegone (256%), menthofuran (178%), and menthol (197%). Interestingly, the accumulation of menthone (229%) or menthofuran (339%) was observed with far-red light treatment. The quantification of glandular trichomes density revealed that no increase under light supplement was confirmed. Blue light treatment even suppressed the glandular trichome formation. No promotion of photosynthesis was observed by pulse-amplitude-modulation (PAM) fluorometry. The present result indicates that light supplements directly promoted the biosynthetic pathways of cyclic monoterpenes.


2020 ◽  
Vol 7 ◽  
Author(s):  
Katarzyna I. Jankowska ◽  
Rana Nagarkatti ◽  
Nirmallya Acharyya ◽  
Neetu Dahiya ◽  
Caitlin F. Stewart ◽  
...  

The introduction of pathogen reduction technologies (PRTs) to inactivate bacteria, viruses and parasites in donated blood components stored for transfusion adds to the existing arsenal toward reducing the risk of transfusion-transmitted infectious diseases (TTIDs). We have previously demonstrated that 405 nm violet-blue light effectively reduces blood-borne bacteria in stored human plasma and platelet concentrates. In this report, we investigated the microbicidal effect of 405 nm light on one important bloodborne parasite Trypanosoma cruzi that causes Chagas disease in humans. Our results demonstrated that a light irradiance at 15 mWcm−2 for 5 h, equivalent to 270 Jcm−2, effectively inactivated T. cruzi by over 9.0 Log10, in plasma and platelets that were evaluated by a MK2 cell infectivity assay. Giemsa stained T. cruzi infected MK2 cells showed that the light-treated parasites in plasma and platelets were deficient in infecting MK2 cells and did not differentiate further into intracellular amastigotes unlike the untreated parasites. The light-treated and untreated parasite samples were then evaluated for any residual infectivity by injecting the treated parasites into Swiss Webster mice, which did not develop infection even after the animals were immunosuppressed, further demonstrating that the light treatment was completely effective for inactivation of the parasite; the light-treated platelets had similar in vitro metabolic and biochemical indices to that of untreated platelets. Overall, these results provide a proof of concept toward developing 405 nm light treatment as a pathogen reduction technology (PRT) to enhance the safety of stored human plasma and platelet concentrates from bloodborne T. cruzi, which causes Chagas disease.


JAMA ◽  
1904 ◽  
Vol XLII (9) ◽  
pp. 590
Author(s):  
LOUIS E. SCHMIDT
Keyword(s):  

2021 ◽  
Author(s):  
Rodrigo L Fabri ◽  
Jhamine C O Freitas ◽  
Ari S O Lemos ◽  
Lara M Campos ◽  
Irley O M Diniz ◽  
...  

Abstract Spilanthol is a bioactive alkylamide from the native Amazon plant species, Acmella oleracea. However, antifungal activities of spilanthol and its application to the therapeutic treatment of candidiasis remains to be explored. This study sought to evaluate the in vitro and in vivo antifungal activity of spilanthol previously isolated from A. oleracea (spilanthol(AcO)) against Candida albicans ATCC® 10231™, a multidrug-resistant fungal strain. Microdilution methods were used to determine inhibitory and fungicidal concentrations of spilanthol(AcO). In planktonic cultures, the fungal growth kinetics, yeast cell metabolic activity, cell membrane permeability and cell wall integrity were investigated. The effect of spilanthol(AcO) on the proliferation and adhesion of fungal biofilms was evaluated by whole slide imaging and scanning electron microscopy. The biochemical composition of the biofilm matrix was also analyzed. In parallel, spilanthol(AcO) was tested in vivo in an experimental vulvovaginal candidiasis model. Our in vitro analyses in C. albicans planktonic cultures detected a significant inhibitory effect of spilanthol(AcO), which affects both yeast cell membrane and cell wall integrity, interfering with the fungus growth. C. albicans biofilm proliferation and adhesion, as well as, carbohydrates and DNA in biofilm matrix were reduced after spilanthol(AcO) treatment. Moreover, infected rats treated with spilanthol(AcO) showed consistent reduction of both fungal burden and inflammatory processes compared to the untreated animals. Altogether, our findings demonstrated that spilanthol(AcO) is an bioactive compound against planktonic and biofilm forms of a multidrug resistant C. albicans strain. Furthermore, spilanthol(AcO) can be potentially considered for therapeutical treatment of vulvovaginal candidiasis caused by C. albicans. Lay Abstract This study sought to evaluate the antifungal activity of spilanthol against Candida albicans ATCC® 10 231™, a multidrug-resistant fungal strain. Our findings demonstrated that spilanthol(AcO) can be potentially considered for therapeutical treatment of vulvovaginal candidiasis caused by C. albicans.


2013 ◽  
Vol 57 (4) ◽  
pp. 1918-1920 ◽  
Author(s):  
K. F. Mitchell ◽  
H. T. Taff ◽  
M. A. Cuevas ◽  
E. L. Reinicke ◽  
H. Sanchez ◽  
...  

ABSTRACTCandidabiofilm infections pose an increasing threat in the health care setting due to the drug resistance associated with this lifestyle. Several mechanisms underlie the resistance phenomenon. InCandida albicans, one mechanism involves drug impedance by the biofilm matrix linked to β-1,3 glucan. Here, we show this is important for otherCandidaspp. We identified β-1,3 glucan in the matrix, found that the matrix sequesters antifungal drug, and enhanced antifungal susceptibility with matrix β-1,3 glucan hydrolysis.


2018 ◽  
Vol 45 (12) ◽  
pp. 1223 ◽  
Author(s):  
Haifang Yan ◽  
Bo Zhou ◽  
Wei He ◽  
Yuzhe Nie ◽  
Yuhua Li

ROC1 is a prototypic peptidyl prolyl cis/trans isomerase (PPIase) of the plant cytosol belonging to the large subfamily of cyclophilins that are associated with diverse functions through foldase, scaffolding, chaperoning or other unknown activities. Although many functions of plant cyclophilins have been reported, the molecular basis of stress-responsive expression of plant cyclophilins is still largely unknown. To characterise the roles of BrROC1 during light treatment and their responses in various abiotic stresses, we identified BrROC1 genes and characterised their expression patterns in Brassica rapa subsp. rapa ‘Tsuda’. Our results showed that BrROC1 genes are multi-family genes. Transcript level analysis showed BrROC1-2 expressed higher than BrROC1-1 in 0 to 6-day-old seedlings under natural light. Moreover, BrROC1-2 genes were also induced to highly express in the cotyledon, upper hypocotyls and lower hypocotyls of seedlings under UV-A and blue-light treatment. In addition, the transcript level of BrROC1-1 was higher in pigment tissues than that in unpigment tissues (cotyledon and lower hypocotyl) under UV-A and blue-light treatment. Furthermore, when the unpigment epidermis (shaded light) of 2-month-old ‘Tsuda’ turnip roots was exposed to UV-A light, transcript levels of the BrROC1-1 and BrROC1-2 were significantly increased with time prolongation. These two BrROC1 genes might be involved in UV-A-induced anthocyanin synthesis in the root epidermis of ‘Tsuda’ turnip, which accumulates high levels of anthocyanin. These two BrROC1 genes were also induced to be regulated by abiotic stresses such as high or low temperature, dehydration, osmotic and salt stresses. Then, the results indicate that BrROC1 genes are involved in light induction response and may play important roles in adaptation of plants to various environmental stresses.


Sign in / Sign up

Export Citation Format

Share Document