Effects of climate change on species distribution, community structure, and conservation of birds in protected areas in Colombia

2012 ◽  
Vol 13 (2) ◽  
pp. 235-248 ◽  
Author(s):  
Jorge Velásquez-Tibatá ◽  
Paul Salaman ◽  
Catherine H. Graham
PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e5222 ◽  
Author(s):  
Carlos Riquelme ◽  
Sergio A. Estay ◽  
Rodrigo López ◽  
Hernán Pastore ◽  
Mauricio Soto-Gamboa ◽  
...  

BackgroundClimate change is one of the greatest threats to biodiversity, pushing species to shift their distribution ranges and making existing protected areas inadequate. Estimating species distribution and potential modifications under climate change are then necessary for adjusting conservation and management plans; this is especially true for endangered species. An example of this issue is the huemul (Hippocamelus bisulcus), an endemic endangered deer from the southern Andes Range, with less than 2,000 individuals. It is distributed in fragmented populations along a 2,000 km latitudinal gradient, in Chile and Argentina. Several threats have reduced its distribution to <50% of its former range.MethodsTo estimate its potential distribution and protected areas effectiveness, we constructed a species distribution model using 2,813 huemul presence points throughout its whole distribution range, together with 19 bioclimatic layers and altitude information from Worldclim. Its current distribution was projected for years 2050 and 2070 using five different Global Climate Models estimated for scenarios representing two carbon Representative Concentration Routes (RCP)—RCP4.5 and RCP6.0.ResultsBased on current huemul habitat variables, we estimated 91,617 km2of suitable habitat. In future scenarios of climate change, there was a loss of suitable habitat due to altitudinal and latitudinal variation. Future projections showed a decrease of 59.86–60.26% for the year 2050 and 58.57–64.34% for the year 2070 according to RCP4.5 and RCP6.0, respectively. Protected areas only covered only 36.18% of the present distribution, 38.57–34.94% for the year 2050 and 30.79–31.94% for 2070 under climate change scenarios.DiscussionModeling current and future huemul distributions should allow the establishment of priority conservation areas in which to focus efforts and funds, especially areas without official protection. In this way, we can improve management in areas heavily affected by climate change to help ensure the persistence of this deer and other species under similar circumstances worldwide.


2020 ◽  
Vol 637 ◽  
pp. 159-180
Author(s):  
ND Gallo ◽  
M Beckwith ◽  
CL Wei ◽  
LA Levin ◽  
L Kuhnz ◽  
...  

Natural gradient systems can be used to examine the vulnerability of deep-sea communities to climate change. The Gulf of California presents an ideal system for examining relationships between faunal patterns and environmental conditions of deep-sea communities because deep-sea conditions change from warm and oxygen-rich in the north to cold and severely hypoxic in the south. The Monterey Bay Aquarium Research Institute (MBARI) remotely operated vehicle (ROV) ‘Doc Ricketts’ was used to conduct seafloor video transects at depths of ~200-1400 m in the northern, central, and southern Gulf. The community composition, density, and diversity of demersal fish assemblages were compared to environmental conditions. We tested the hypothesis that climate-relevant variables (temperature, oxygen, and primary production) have more explanatory power than static variables (latitude, depth, and benthic substrate) in explaining variation in fish community structure. Temperature best explained variance in density, while oxygen best explained variance in diversity and community composition. Both density and diversity declined with decreasing oxygen, but diversity declined at a higher oxygen threshold (~7 µmol kg-1). Remarkably, high-density fish communities were observed living under suboxic conditions (<5 µmol kg-1). Using an Earth systems global climate model forced under an RCP8.5 scenario, we found that by 2081-2100, the entire Gulf of California seafloor is expected to experience a mean temperature increase of 1.08 ± 1.07°C and modest deoxygenation. The projected changes in temperature and oxygen are expected to be accompanied by reduced diversity and related changes in deep-sea demersal fish communities.


2021 ◽  
Vol 4 ◽  
pp. 100082
Author(s):  
Emmanuel Opuni-Frimpong ◽  
Elizabeth Gabienu ◽  
Daniel Adusu ◽  
Nana Yeboaa Opuni-Frimpong ◽  
Frederick Gyasi Damptey

1990 ◽  
Vol 5 ◽  
pp. 13-30 ◽  
Author(s):  
D. A. Springer ◽  
A. I. Miller

The way we view species distribution patterns, particularly at the level commonly referred to as the “community”, has changed over the past 70 years in biology and, subsequently, in paleontology. Because the degree to which species associations can be interpreted as ecological and evolutionary units depends ultimately on recognition and interpretation of faunal spatial variability, we need to understand the nature of this variability at all levels of resolution before we can adequately address questions of “community” structure and dynamics. While it is possible to recognize spatial variability at several levels, from the distributions of individuals within a species to the overall pattern created by the global biota, we must ask whether these patterns really comprise a hierarchy with natural discontinuities (Fig. 1), or whether it is more realistic to view them as a continuous variability spectrum.


2010 ◽  
Vol 7 (12) ◽  
pp. 3941-3959 ◽  
Author(s):  
I. Marinov ◽  
S. C. Doney ◽  
I. D. Lima

Abstract. The response of ocean phytoplankton community structure to climate change depends, among other factors, upon species competition for nutrients and light, as well as the increase in surface ocean temperature. We propose an analytical framework linking changes in nutrients, temperature and light with changes in phytoplankton growth rates, and we assess our theoretical considerations against model projections (1980–2100) from a global Earth System model. Our proposed "critical nutrient hypothesis" stipulates the existence of a critical nutrient threshold below (above) which a nutrient change will affect small phytoplankton biomass more (less) than diatom biomass, i.e. the phytoplankton with lower half-saturation coefficient K are influenced more strongly in low nutrient environments. This nutrient threshold broadly corresponds to 45° S and 45° N, poleward of which high vertical mixing and inefficient biology maintain higher surface nutrient concentrations and equatorward of which reduced vertical mixing and more efficient biology maintain lower surface nutrients. In the 45° S–45° N low nutrient region, decreases in limiting nutrients – associated with increased stratification under climate change – are predicted analytically to decrease more strongly the specific growth of small phytoplankton than the growth of diatoms. In high latitudes, the impact of nutrient decrease on phytoplankton biomass is more significant for diatoms than small phytoplankton, and contributes to diatom declines in the northern marginal sea ice and subpolar biomes. In the context of our model, climate driven increases in surface temperature and changes in light are predicted to have a stronger impact on small phytoplankton than on diatom biomass in all ocean domains. Our analytical predictions explain reasonably well the shifts in community structure under a modeled climate-warming scenario. Climate driven changes in nutrients, temperature and light have regionally varying and sometimes counterbalancing impacts on phytoplankton biomass and structure, with nutrients and temperature dominant in the 45° S–45° N band and light-temperature effects dominant in the marginal sea-ice and subpolar regions. As predicted, decreases in nutrients inside the 45° S–45° N "critical nutrient" band result in diatom biomass decreasing more than small phytoplankton biomass. Further stratification from global warming could result in geographical shifts in the "critical nutrient" threshold and additional changes in ecology.


Sign in / Sign up

Export Citation Format

Share Document