scholarly journals Enhancing the provisioning of ecosystem services in South Korea under climate change: The benefits and pitfalls of current forest management strategies

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Moonil Kim ◽  
Florian Kraxner ◽  
Nicklas Forsell ◽  
Cholho Song ◽  
Woo-Kyun Lee
2012 ◽  
Vol 163 (12) ◽  
pp. 481-492
Author(s):  
Andreas Rigling ◽  
Ché Elkin ◽  
Matthias Dobbertin ◽  
Britta Eilmann ◽  
Arnaud Giuggiola ◽  
...  

Forest and climate change in the inner-Alpine dry region of Visp Over the past decades, observed increases in temperature have been particularly pronounced in mountain regions. If this trend should continue in the 21st Century, frequency and intensity of droughts will increase, and will pose major challenges for forest management. Under current conditions drought-related tree mortality is already an important factor of forest ecosystems in dry inner-Alpine valleys. Here we assess the sensitivity of forest ecosystems to climate change and evaluate alternative forest management strategies in the Visp region. We integrate data from forest monitoring plots, field experiments and dynamic forests models to evaluate how the forest ecosystem services timber production, protection against natural hazards, carbon storage and biodiver-sity will be impacted. Our results suggest that at dry low elevation sites the drought tolerance of native tree species will be exceeded so that in the longer term a transition to more drought-adapted species should be considered. At medium elevations, drought and insect disturbances as by bark beetles are projected to be important for forest development, while at high elevations forests are projected to expand and grow better. All of the ecosystem services that we considered are projected to be impacted by changing forest conditions, with the specific impacts often being elevation-dependent. In the medium term, forest management that aims to increase the resilience of forests to drought can help maintain forest ecosystem services temporarily. However, our results suggest that relatively rigid management interventions are required to achieve significant effects. By using a combination of environmental monitoring, field experiments and modeling, we are able to gain insight into how forest ecosystem, and the services they provide, will respond to future changes.


Plants ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1604
Author(s):  
Sun Hee Hong ◽  
Yong Ho Lee ◽  
Gaeun Lee ◽  
Do-Hun Lee ◽  
Pradeep Adhikari

Predicting the distribution of invasive weeds under climate change is important for the early identification of areas that are susceptible to invasion and for the adoption of the best preventive measures. Here, we predicted the habitat suitability of 16 invasive weeds in response to climate change and land cover changes in South Korea using a maximum entropy modeling approach. Based on the predictions of the model, climate change is likely to increase habitat suitability. Currently, the area of moderately suitable and highly suitable habitats is estimated to be 8877.46 km2, and 990.29 km2, respectively, and these areas are expected to increase up to 496.52% by 2050 and 1439.65% by 2070 under the representative concentration pathways 4.5 scenario across the country. Although habitat suitability was estimated to be highest in the southern regions (<36° latitude), the central and northern regions are also predicted to have substantial increases in suitable habitat areas. Our study revealed that climate change would exacerbate the threat of northward weed invasions by shifting the climatic barriers of invasive weeds from the southern region. Thus, it is essential to initiate control and management strategies in the southern region to prevent further invasions into new areas.


2009 ◽  
Vol 85 (5) ◽  
pp. 710-714
Author(s):  
Winifred B Kessler

This paper revisits 3 broad predictions about forestry’s future presented by the author in 1993: the growing importance of products that come from forests, forests increasingly valued for more than the sum of their products and uses, and better appreciation of forests as complex ecological systems controlled by forces larger than humans. These predictions have played out in more dramatic ways than initially envisioned, driven in part by 3 emergent forces: the energy crisis, the ascension of new economic superpowers, and climate change. Examples of these trends and relationships are examined from Canadian and United States contexts. Key words: ecosystem services, forests and climate change, forests and global warming, forest biofuels, forest management trends, sustainable forestry


2020 ◽  
Author(s):  
Emin Zeki BASKENT ◽  
Jose Guilherme BORGES ◽  
Jan KASPAR

Abstract Background: Forest policy and decision makers are challenged by the need to balance the increasing demand for multiple ecosystem services while addressing the impacts of natural disturbances (e.g. wildfires, droughts, wind, insect attacks) and global change scenarios (e.g. climate change) on its potential supply. This challenge provides the motivation for the development of a framework for incorporating concerns with a wide range of ecosystem services in multiple criteria management planning contexts. Thus, the paper focused on both the analysis of the current state-of-the art in forest management planning and the development of a conceptual framework to accommodate various components in a forest ecosystem management planning process.Results: Based on a thorough recent classification of forest management planning problems and the state-of-the-art research, the key dimensions of that framework and the process were defined. The emphasis is on helping identify how concerns with a wide range of ecosystem services may be analyzed and better understood by forest ecosystem management planning. This research discusses the potential of contemporary management planning approaches to address multiple forest ecosystem services. It highlights the need of a landscape-level perspective and of spatial resolution to integrate multiple ecosystem services. It discusses the importance of methods and tools that may help support the involvement of stakeholders and public participation in hierarchical planning processes. Conclusions: The research addressed the need of methods and tools that may encapsulate the ecological, economic and social complexity of forest ecosystem management to provide an efficient plan, information about tradeoffs between ecosystem services as well as the sensitivity of the plan to uncertain parameters (e.g. prices, climate change) in a timely manner.


2017 ◽  
Vol 35 (3) ◽  
pp. 413-425 ◽  
Author(s):  
Moonil Kim ◽  
Somin Yoo ◽  
Nahui Kim ◽  
Wona Lee ◽  
Boyoung Ham ◽  
...  

Forests ◽  
2019 ◽  
Vol 10 (9) ◽  
pp. 809 ◽  
Author(s):  
Gintautas Mozgeris ◽  
Vilis Brukas ◽  
Nerijus Pivoriūnas ◽  
Gintautas Činga ◽  
Ekaterina Makrickienė ◽  
...  

Research Highlights: Validating modelling approach which combines global framework conditions in the form of climate and policy scenarios with the use of forest decision support system to assess climate change impacts on the sustainability of forest management. Background and Objectives: Forests and forestry have been confirmed to be sensitive to climate. On the other hand, human efforts to mitigate climate change influence forests and forest management. To facilitate the evaluation of future sustainability of forest management, decision support systems are applied. Our aims are to: (1) Adopt and validate decision support tool to incorporate climate change and its mitigation impacts on forest growth, global timber demands and prices for simulating future trends of forest ecosystem services in Lithuania, (2) determine the magnitude and spatial patterns of climate change effects on Lithuanian forests and forest management in the future, supposing that current forestry practices are continued. Materials and Methods: Upgraded version of Lithuanian forestry simulator Kupolis was used to model the development of all forests in the country until 2120 under management conditions of three climate change scenarios. Selected stand-level forest and forest management characteristics were aggregated to the level of regional branches of the State Forest Enterprise and analyzed for the spatial and temporal patterns of climate change effects. Results: Increased forest growth under a warmer future climate resulted in larger tree dimensions, volumes of growing stock, naturally dying trees, harvested assortments, and also higher profits from forestry activities. Negative impacts were detected for the share of broadleaved tree species in the standing volume and the tree species diversity. Climate change effects resulted in spatially clustered patterns—increasing stand productivity, and amounts of harvested timber were concentrated in the regions with dominating coniferous species, while the same areas were exposed to negative dynamics of biodiversity-related forest attributes. Current forest characteristics explained 70% or more of the variance of climate change effects on key forest and forest management attributes. Conclusions: Using forest decision support systems, climate change scenarios and considering the balance of delivered ecosystem services is suggested as a methodological framework for validating forest management alternatives aiming for more adaptiveness in Lithuanian forestry.


2010 ◽  
Vol 2010 ◽  
pp. 1-14 ◽  
Author(s):  
A. Paige Fischer ◽  
Susan Charnley

Nonindustrial private—or “family”—forests hold great potential for sequestering carbon and have received much attention in discussions about forestry-based climate change mitigation. However, little is known about social and cultural influences on owners' willingness to manage for carbon and respond to policies designed to encourage carbon-oriented management. We review the published literature to examine how family forest owners' values, ecological knowledge, risk perceptions, and forest management and policy preferences may affect their interest in managing for carbon sequestration. We find that although family forest owners may not be particularly motivated to mitigate climate change, their forest management values and practices compliment many carbon-oriented management strategies. However, the strong value owners place on privacy and autonomy, and the weak importance many place on financial reward, may inhibit participation in policies and programs that incentivize carbon-oriented management. These findings also have implications for policy efforts to encourage management for other ecological values besides carbon sequestration on family forestlands.


Sign in / Sign up

Export Citation Format

Share Document