scholarly journals Virtual issue: cell wall functions in plant growth and environmental responses

2021 ◽  
Vol 134 (6) ◽  
pp. 1155-1158
Author(s):  
Hiroaki Iwai
2021 ◽  
Author(s):  
Sare Asli ◽  
Nedal Massalha ◽  
Muhamad Hugerat

Abstract AimsTo determine the effects of treated wastewater (TWW) and dialyzed TWW (DTWW) through dialysis tube with a cut-off at 6000-8000 Da, on the water transport characteristics of maize seedlings (Zea mays L). MethodsLaboratory experiments were conducted to determine the effect of TWW on the hydraulic conductivity of excised roots. Moreover, the effect on transpiration, plant growth, root cell permeability and on the plant fresh and dry weight was determined. ResultsPressurized water flow through the excised primary roots was reduced by 25%-52%, within 90 min of exposure to TWW or DTWW. In hydroponics, DTWW affected root elongation severely by 58 %, while cell-wall pore sizes of same roots were little reduced (by 6%). Additionally, the exposure to TWW or DTWW caused inhibition of both leaf growth rate by (26%-70%) and transpiration by (14%-64%). While in soil growth, the plant fresh and dry weight was also significantly affected but not with secondary DTWW. Conclusions These impacts appeared simultaneously to involve phytotoxic and physical clogging impacts. First, the inhibition in hydraulic conductivity through live roots (phytotoxic and physical effects) after exposure to secondary DTWW was by 22%, while through killed roots accepted after hot alcohol disruption of cell membranes (physical effects only); was only by 14%. Second, although DTWW affected root elongation severely by 58%, cell-wall pore sizes of same roots were little reduced by 6%. We conclude that large molecules, such as polypeptides, remained after the dialysis process, may have produced hormone-like activity that affected root water permeability.


2020 ◽  
Author(s):  
Colin Peter Singer Kruse ◽  
Alexander D Meyers ◽  
Proma Basu ◽  
Sarahann Hutchinson ◽  
Darron R Luesse ◽  
...  

Abstract Background: Understanding of gravity sensing and response is critical to long-term human habitation in space and can provide new advantages for terrestrial agriculture. To this end, the altered gene expression profile induced by microgravity has been repeatedly queried by microarray and RNA-seq experiments to understand gravitropism. However, the quantification of altered protein abundance in space has been minimally investigated. Results: Proteomic (iTRAQ-labelled LC-MS/MS) and transcriptomic (RNA-seq) analyses simultaneously quantified protein and transcript differential expression of three-day old, etiolated Arabidopsis thaliana seedlings grown aboard the International Space Station along with their ground control counterparts. Protein extracts were fractionated to isolate soluble and membrane proteins and analyzed to detect differentially phosphorylated peptides. In total, 968 RNAs, 107 soluble proteins, and 103 membrane proteins were identified as differentially expressed. In addition, the proteomic analyses identified 16 differential phosphorylation events. Proteomic data delivered novel insights and simultaneously provided new context to previously made observations of gene expression in microgravity. There is a sweeping shift in post-transcriptional mechanisms of gene regulation including RNA-decapping protein DCP5, the splicing factors GRP7 and GRP8, and AGO4,. These data also indicate AHA2 and FERONIA as well as CESA1 and SHOU4 as central to the cell wall adaptations seen in spaceflight. Patterns of tubulin-a 1, 3,4 and 6 phosphorylation further reveal an interaction of microtubule and redox homeostasis that mirrors osmotic response signaling elements. The absence of gravity also results in a seemingly wasteful dysregulation of plastid gene transcription. Conclusions: The datasets gathered from Arabidopsis seedlings exposed to microgravity revealed marked impacts on post-transcriptional regulation, cell wall synthesis, redox/microtubule dynamics, and plastid gene transcription. The impact of post-transcriptional regulatory alterations represents an unstudied element of the plant microgravity response with the potential to significantly impact plant growth efficiency and beyond. What’s more, addressing the effects of microgravity on AHA2, CESA1, and alpha tubulins has the potential to enhance cytoskeletal organization and cell wall composition, thereby enhancing biomass production and growth in microgravity. Finally, understanding and manipulating the dysregulation of plastid gene transcription has further potential to address the goal of enhancing plant growth in the stressful conditions of microgravity.


2003 ◽  
Vol 16 (1) ◽  
pp. 107-118 ◽  
Author(s):  
D. L. Jones ◽  
J. Petty ◽  
D. C. Hoyle ◽  
A. Hayes ◽  
E. Ragni ◽  
...  

Often changes in gene expression levels have been considered significant only when above/below some arbitrarily chosen threshold. We investigated the effect of applying a purely statistical approach to microarray analysis and demonstrated that small changes in gene expression have biological significance. Whole genome microarray analysis of a pde2Δ mutant, constructed in the Saccharomyces cerevisiae reference strain FY23, revealed altered expression of ∼11% of protein encoding genes. The mutant, characterized by constitutive activation of the Ras/cAMP pathway, has increased sensitivity to stress, reduced ability to assimilate nonfermentable carbon sources, and some cell wall integrity defects. Applying the Munich Information Centre for Protein Sequences (MIPS) functional categories revealed increased expression of genes related to ribosome biogenesis and downregulation of genes in the cell rescue, defense, cell death and aging category, suggesting a decreased response to stress conditions. A reduced level of gene expression in the unfolded protein response pathway (UPR) was observed. Cell wall genes whose expression was affected by this mutation were also identified. Several of the cAMP-responsive orphan genes, upon further investigation, revealed cell wall functions; others had previously unidentified phenotypes assigned to them. This investigation provides a statistical global transcriptome analysis of the cellular response to constitutive activation of the Ras/cAMP pathway.


2015 ◽  
Vol 10 (5) ◽  
pp. 1934578X1501000 ◽  
Author(s):  
Naoya Wasano ◽  
Tomoko Takemura ◽  
Raihan Ismil ◽  
Baki Bakar ◽  
Yoshiharu Fujii

Goniothalamin produced by the Malaysian medicinal plant, Goniothalamus andersonii J. Sinclair, strongly inhibits plant growth. However, its mode of action has not been characterized at the gene expression level. We conducted DNA microarray assay to analyze the changes in early gene responses of Arabidopsis thaliana seedlings. After a 6-h exposure to goniothalamin, we observed an upregulation of genes highly associated with heat response, and 22 heat shock protein ( AtHSP) genes were upregulated more than 50 fold. Together with these genes, we observed upregulation of the genes related to oxidative stress and protein folding. Also, the genes related to cell wall modification and cell growth, expansin ( AtEXPA) genes, were significantly downregulated. The results suggested that goniothalamin induces oxidative stresses and inhibits the expression of cell wall-associated proteins resulting in growth inhibition of Arabidopsis seedlings.


2017 ◽  
Vol 27 (15) ◽  
pp. 2248-2259.e4 ◽  
Author(s):  
Adam M. Saffer ◽  
Nicholas C. Carpita ◽  
Vivian F. Irish

2019 ◽  
Author(s):  
Christopher Kesten ◽  
Francisco M. Gámez-Arjona ◽  
Stefan Scholl ◽  
Alexandra Menna ◽  
Susanne Dora ◽  
...  

AbstractEnvironmental adaptation of organisms relies on fast perception and response to external signals, which lead to developmental changes. Plant cell growth is strongly dependent on cell wall remodeling. However, little is known about cell wall-related sensing of biotic stimuli and the downstream mechanisms that coordinate growth and defense responses. We generated genetically encoded pH sensors to determine absolute pH changes across the plasma membrane in response to biotic stress. A rapid apoplastic acidification by phosphorylation-based proton pump activation was followed by an acidification of the cortical side of the plasma membrane in response to the fungus Fusarium oxysporum. The proton chemical gradient modulation immediately reduced cellulose synthesis and cell growth and, furthermore, had a direct influence on the pathogenicity of the fungus. All these effects were dependent on the COMPANION OF CELLULOSE SYNTHASE proteins that are thus at the nexus of plant growth and defense. Hence, our discoveries show a remarkable connection between plant biomass production, immunity, and pH control, and advance our ability to investigate the plant growth-defense balance.


Sign in / Sign up

Export Citation Format

Share Document