scholarly journals Merging familiar and new senses to perceive and act in space

2021 ◽  
Vol 22 (S1) ◽  
pp. 69-75
Author(s):  
Marko Nardini

AbstractOur experience of the world seems to unfold seamlessly in a unitary 3D space. For this to be possible, the brain has to merge many disparate cognitive representations and sensory inputs. How does it do so? I discuss work on two key combination problems: coordinating multiple frames of reference (e.g. egocentric and allocentric), and coordinating multiple sensory signals (e.g. visual and proprioceptive). I focus on two populations whose spatial processing we can observe at a crucial stage of being configured and optimised: children, whose spatial abilities are still developing significantly, and naïve adults learning new spatial skills, such as sensing distance using auditory cues. The work uses a model-based approach to compare participants’ behaviour with the predictions of alternative information processing models. This lets us see when and how—during development, and with experience—the perceptual-cognitive computations underpinning our experiences in space change. I discuss progress on understanding the limits of effective spatial computation for perception and action, and how lessons from the developing spatial cognitive system can inform approaches to augmenting human abilities with new sensory signals provided by technology.

Author(s):  
Thomas Douglas

Interventions that modify a person’s motivations through chemically or physically influencing the brain seem morally objectionable, at least when they are performed nonconsensually. This chapter raises a puzzle for attempts to explain their objectionability. It first seeks to show that the objectionability of such interventions must be explained at least in part by reference to the sort of mental interference that they involve. It then argues that it is difficult to furnish an explanation of this sort. The difficulty is that these interventions seem no more objectionable, in terms of the kind of mental interference that they involve, than certain forms of environmental influence that many would regard as morally innocuous. The argument proceeds by comparing a particular neurointervention with a comparable environmental intervention. The author argues, first, that the two dominant explanations for the objectionability of the neurointervention apply equally to the environmental intervention, and second, that the descriptive difference between the environmental intervention and the neurointervention that most plausibly grounds the putative moral difference in fact fails to do so. The author concludes by presenting a trilemma that falls out of the argument.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Zakaria Djebbara ◽  
Lars Brorson Fich ◽  
Klaus Gramann

AbstractAction is a medium of collecting sensory information about the environment, which in turn is shaped by architectural affordances. Affordances characterize the fit between the physical structure of the body and capacities for movement and interaction with the environment, thus relying on sensorimotor processes associated with exploring the surroundings. Central to sensorimotor brain dynamics, the attentional mechanisms directing the gating function of sensory signals share neuronal resources with motor-related processes necessary to inferring the external causes of sensory signals. Such a predictive coding approach suggests that sensorimotor dynamics are sensitive to architectural affordances that support or suppress specific kinds of actions for an individual. However, how architectural affordances relate to the attentional mechanisms underlying the gating function for sensory signals remains unknown. Here we demonstrate that event-related desynchronization of alpha-band oscillations in parieto-occipital and medio-temporal regions covary with the architectural affordances. Source-level time–frequency analysis of data recorded in a motor-priming Mobile Brain/Body Imaging experiment revealed strong event-related desynchronization of the alpha band to originate from the posterior cingulate complex, the parahippocampal region as well as the occipital cortex. Our results firstly contribute to the understanding of how the brain resolves architectural affordances relevant to behaviour. Second, our results indicate that the alpha-band originating from the occipital cortex and parahippocampal region covaries with the architectural affordances before participants interact with the environment, whereas during the interaction, the posterior cingulate cortex and motor areas dynamically reflect the affordable behaviour. We conclude that the sensorimotor dynamics reflect behaviour-relevant features in the designed environment.


2016 ◽  
Vol 12 (1) ◽  
pp. 20150883 ◽  
Author(s):  
Natalia Albuquerque ◽  
Kun Guo ◽  
Anna Wilkinson ◽  
Carine Savalli ◽  
Emma Otta ◽  
...  

The perception of emotional expressions allows animals to evaluate the social intentions and motivations of each other. This usually takes place within species; however, in the case of domestic dogs, it might be advantageous to recognize the emotions of humans as well as other dogs. In this sense, the combination of visual and auditory cues to categorize others' emotions facilitates the information processing and indicates high-level cognitive representations. Using a cross-modal preferential looking paradigm, we presented dogs with either human or dog faces with different emotional valences (happy/playful versus angry/aggressive) paired with a single vocalization from the same individual with either a positive or negative valence or Brownian noise. Dogs looked significantly longer at the face whose expression was congruent to the valence of vocalization, for both conspecifics and heterospecifics, an ability previously known only in humans. These results demonstrate that dogs can extract and integrate bimodal sensory emotional information, and discriminate between positive and negative emotions from both humans and dogs.


2020 ◽  
Author(s):  
Ethan Bromberg-Martin ◽  
Ilya E. Monosov

Humans and animals navigate uncertain environments by seeking information about the future. Remarkably, we often seek information even when it has no instrumental value for aiding our decisions – as if the information is a source of value in its own right. In recent years, there has been a flourishing of research into these non-instrumental information preferences and their implementation in the brain. Individuals value information about uncertain future rewards, and do so for multiple reasons, including valuing resolution of uncertainty and overweighting desirable information. The brain motivates this information seeking by tapping into some of the same circuitry as primary rewards like food and water. However, it also employs cortex and basal ganglia circuitry that predicts and values information as distinct from primary reward. Uncovering how these circuits cooperate will be fundamental to understanding information seeking and motivated behavior as a whole, in our increasingly complex and information-rich world.


PLoS Biology ◽  
2021 ◽  
Vol 19 (11) ◽  
pp. e3001465
Author(s):  
Ambra Ferrari ◽  
Uta Noppeney

To form a percept of the multisensory world, the brain needs to integrate signals from common sources weighted by their reliabilities and segregate those from independent sources. Previously, we have shown that anterior parietal cortices combine sensory signals into representations that take into account the signals’ causal structure (i.e., common versus independent sources) and their sensory reliabilities as predicted by Bayesian causal inference. The current study asks to what extent and how attentional mechanisms can actively control how sensory signals are combined for perceptual inference. In a pre- and postcueing paradigm, we presented observers with audiovisual signals at variable spatial disparities. Observers were precued to attend to auditory or visual modalities prior to stimulus presentation and postcued to report their perceived auditory or visual location. Combining psychophysics, functional magnetic resonance imaging (fMRI), and Bayesian modelling, we demonstrate that the brain moulds multisensory inference via 2 distinct mechanisms. Prestimulus attention to vision enhances the reliability and influence of visual inputs on spatial representations in visual and posterior parietal cortices. Poststimulus report determines how parietal cortices flexibly combine sensory estimates into spatial representations consistent with Bayesian causal inference. Our results show that distinct neural mechanisms control how signals are combined for perceptual inference at different levels of the cortical hierarchy.


2021 ◽  
Vol 14 (10) ◽  
pp. 1030
Author(s):  
Léa Chaskiel ◽  
Robert Dantzer ◽  
Jan Konsman

Sickness behavior, characterized by on overall reduction in behavioral activity, is commonly observed after bacterial infection. Sickness behavior can also be induced by the peripheral administration of Gram-negative bacterial lipopolysaccharide (LPS) or interleukin-1beta (IL-1β), a pro-inflammatory cytokine released by LPS-activated macrophages. In addition to the microglia, the brain contains perivascular macrophages, which express the IL-1 type 1 receptor (IL-1R1). In the present study, we assessed the role of brain perivascular macrophages in mediating IL-1β-induced sickness behavior in rats. To do so, we used intracerebroventricular (icv) administration of an IL-1β-saporin conjugate, known to eliminate IL-R1-expressing brain cells, prior to systemic or central IL-1β injection. Icv IL-1β-saporin administration resulted in a reduction in brain perivascular macrophages, without altering subsequent icv or ip IL-1β-induced reductions in food intake, locomotor activity, and social interactions. In conclusion, the present work shows that icv IL-1β-saporin administration is an efficient way to target brain perivascular macrophages, and to determine whether these cells are involved in IL-1β-induced sickness behavior.


1971 ◽  
Vol 29 (3) ◽  
pp. 975-982
Author(s):  
Anne Marie Bercik ◽  
John H. Mueller

Schizophrenic and control Ss were compared on the method of generated responses (MGR) and conventional paired-associates (PA), using lists of stimuli which elicited either primarily one response or several responses. The low-dominance list was more difficult, and schizophrenics were generally slower in learning. The MGR, with Ss producing their own responses, was easier than conventional PA (yoked controls). While the MGR reduced the difference between the low- and high-dominance lists, it did not do so differentially for the two populations. The results were discussed in terms of Broen and Storms' theory of “collapsed” response hierarchies in schizophrenia.


2021 ◽  
Author(s):  
Christine Wilson-Mendenhall ◽  
John Dunne ◽  
Richard J Davidson

Contemplative interventions designed to cultivate compassion are receiving increasing empirical attention. Accumulating evidence suggests that these interventions bolster prosocial motivation and warmth towards others. Less is known about how these practices impact compassion in everyday life. Here we consider one mechanistic pathway through which compassion practices may impact perception and action in the world: simulation. Evidence suggests that vividly imagining a situation simulates that experience in the brain as if it were, to a degree, actually happening. Thus, we hypothesize that simulation during imagery-based contemplative practices can construct sensorimotor patterns in the brain that prime an individual to act compassionately in the world. We first present evidence across multiple literatures in Psychology that motivates this hypothesis, including the neuroscience of mental imagery and the emerging literature on prosocial episodic simulation. Then, we examine the specific contemplative practices in compassion-based interventions that may construct such simulations. We conclude with future directions for investigating how compassion-based interventions may shape prosocial perception and action in everyday life.


Author(s):  
David Breuskin ◽  
Ralf Ketter ◽  
Joachim Oertel

Abstract Background Although intracranial traumas by penetrating foreign objects are not absolute rarities, the nature of trauma, the kind of object, and its trajectory make them a one of a kind case every time they occur. Whereas high-velocity traumas mostly result in fatalities, it is the low-velocity traumas that demand an individualized surgical strategy. Methods We present a case report of a 33-year-old patient who was admitted to our department with a self-inflicted transorbital pen injury to the brain. The authors recall the incident and the technique of the pen removal. Results Large surgical exposure of the pen trajectory was considered too traumatic. Therefore, we opted to remove the pen and have an immediate postoperative computed tomography (CT) scan. Due to its fragility, the pen case could only be removed with a screwdriver, inserted into the case. Post-op CT scan showed a small bleeding in the right peduncular region, which was treated conservatively. The patient was transferred back to intensive care unit and woken up the next day. She lost visual function on her right eye, but suffered from no further neurologic deficit. Conclusion Surgical management of removal of intracranial foreign bodies is no routine procedure. Although some would favor a large surgical exposure, we could not think of an approach to do so without maximum surgical efforts. We opted for a minimal surgical procedure with immediate CT scan and achieved an optimal result. We find this case to be worth considering when deciding on a strategy in the future.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Anna Tkachev ◽  
Vita Stepanova ◽  
Lei Zhang ◽  
Ekaterina Khrameeva ◽  
Dmitry Zubkov ◽  
...  

AbstractHuman populations, despite their overwhelming similarity, contain some distinct phenotypic, genetic, epigenetic, and gene expression features. In this study, we explore population differences at yet another level of molecular phenotype: the abundance of non-polar and polar low molecular weight compounds, lipids and metabolites in the prefrontal cortical region of the brain. We assessed the abundance of 1,670 lipids and 258 metabolites in 146 Han Chinese, 97 Western European, and 60 African American individuals of varying ages, covering most of the lifespan. The statistical analysis and logistic regression models both demonstrated extensive lipid and metabolic divergence of the Han Chinese individuals from the other two populations. This divergence was age-dependent, peaking in young adults, and involved metabolites and lipids clustering in specific metabolic pathways.


Sign in / Sign up

Export Citation Format

Share Document