In vitro anti-cancer effect of marmesin by suppression of PI3K/Akt pathway in esophagus cancer cells

Esophagus ◽  
2021 ◽  
Author(s):  
Qi Wang ◽  
Sheng Zhong ◽  
Hua Wu ◽  
Qingquan Wu
2021 ◽  
Vol 12 (1) ◽  
pp. 8-15
Author(s):  
Ainaz Mihanfar ◽  
Niloufar Targhazeh ◽  
Shirin Sadighparvar ◽  
Saber Ghazizadeh Darband ◽  
Maryam Majidinia ◽  
...  

Abstract Doxorubicin (DOX) is an effective chemotherapeutic agent used for the treatment of various types of cancer. However, its poor solubility, undesirable side effects, and short half-life have remained a challenge. We used a formulation based on graphene oxide as an anticancer drug delivery system for DOX in MCF-7 breast cancer cells, to address these issues. In vitro release studies confirmed that the synthesized formulation has an improved release profile in acidic conditions (similar to the tumor microenvironment). Further in vitro studies, including MTT, uptake, and apoptosis assays were performed. The toxic effects of the nanocarrier on the kidney, heart and liver of healthy rats were also evaluated. We observed that the DOX-loaded carrier improved the cytotoxic effect of DOX on the breast cell line compared to free DOX. In summary, our results introduce the DOX-loaded carrier as a potential platform for in vitro targeting of cancer cells and suggest further studies are necessary to investigate its in vivo anti-cancer potential.


Author(s):  
Domenico Mattoscio ◽  
Elisa Isopi ◽  
Alessia Lamolinara ◽  
Sara Patruno ◽  
Alessandro Medda ◽  
...  

Abstract Background Innovative therapies to target tumor-associated neutrophils (PMN) are of clinical interest, since these cells are centrally involved in cancer inflammation and tumor progression. Resolvin D1 (RvD1) is a lipid autacoid that promotes resolution of inflammation by regulating the activity of distinct immune and non-immune cells. Here, using human papilloma virus (HPV) tumorigenesis as a model, we investigated whether RvD1 modulates PMN to reduce tumor progression. Methods Growth-curve assays with multiple cell lines and in vivo grafting of two distinct HPV-positive cells in syngeneic mice were used to determine if RvD1 reduced cancer growth. To investigate if and how RvD1 modulates PMN activities, RNA sequencing and multiplex cytokine ELISA of human PMN in co-culture with HPV-positive cells, coupled with pharmacological depletion of PMN in vivo, were performed. The mouse intratumoral immune cell composition was evaluated through FACS analysis. Growth-curve assays and in vivo pharmacological depletion were used to evaluate anti-tumor activities of human and mouse monocytes, respectively. Bioinformatic analysis of The Cancer Genome Atlas (TCGA) database was exploited to validate experimental findings in patients. Results RvD1 decreased in vitro and in vivo proliferation of human and mouse HPV-positive cancer cells through stimulation of PMN anti-tumor activities. In addition, RvD1 stimulated a PMN-dependent recruitment of classical monocytes as key determinant to reduce tumor growth in vivo. In human in vitro systems, exposure of PMN to RvD1 increased the production of the monocyte chemoattractant protein-1 (MCP-1), and enhanced transmigration of classical monocytes, with potent anti-tumor actions, toward HPV-positive cancer cells. Consistently, mining of immune cells infiltration levels in cervical cancer patients from the TCGA database evidenced an enhanced immune reaction and better clinical outcomes in patients with higher intratumoral monocytes as compared to patients with higher PMN infiltration. Conclusions RvD1 reduces cancer growth by activating PMN anti-cancer activities and encouraging a protective PMN-dependent recruitment of anti-tumor monocytes. These findings demonstrate efficacy of RvD1 as an innovative therapeutic able to stimulate PMN reprogramming to an anti-cancer phenotype that restrains tumor growth.


2020 ◽  
Vol 870 ◽  
pp. 172912 ◽  
Author(s):  
Ehsan Rezaie ◽  
Jafar Amani ◽  
Ali Bidmeshki Pour ◽  
Hamideh Mahmoodzadeh Hosseini

Cancers ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 1550 ◽  
Author(s):  
Tomomi Sanomachi ◽  
Shuhei Suzuki ◽  
Keita Togashi ◽  
Asuka Sugai ◽  
Shizuka Seino ◽  
...  

Spironolactone, a classical diuretic drug, is used to treat tumor-associated complications in cancer patients. Spironolactone was recently reported to exert anti-cancer effects by suppressing DNA damage repair. However, it currently remains unclear whether spironolactone exerts combinational effects with non-DNA-damaging anti-cancer drugs, such as gemcitabine and epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs). Using the cancer cells of lung cancer, pancreatic cancer, and glioblastoma, the combinational effects of spironolactone with gemcitabine and osimertinib, a third-generation EGFR-TKI, were examined in vitro with cell viability assays. To elucidate the underlying mechanisms, we investigated alterations induced in survivin, an anti-apoptotic protein, by spironolactone as well as the chemosensitization effects of the suppression of survivin by YM155, an inhibitor of survivin, and siRNA. We also examined the combinational effects in a mouse xenograft model. The results obtained revealed that spironolactone augmented cell death and the suppression of cell growth by gemcitabine and osimertinib. Spironolactone also reduced the expression of survivin in these cells, and the pharmacological and genetic suppression of survivin sensitized cells to gemcitabine and osimertinib. This combination also significantly suppressed tumor growth without apparent adverse effects in vivo. In conclusion, spironolactone is a safe candidate drug that exerts anti-cancer effects in combination with non-DNA-damaging drugs, such as gemcitabine and osimertinib, most likely through the suppression of survivin.


TECHNOLOGY ◽  
2016 ◽  
Vol 04 (01) ◽  
pp. 60-69 ◽  
Author(s):  
Charles C. Sharkey ◽  
Jiahe Li ◽  
Sweta Roy ◽  
Qianhui Wu ◽  
Michael R. King

This study outlines a drug delivery mechanism that utilizes two independent vehicles, allowing for delivery of chemically and physically distinct agents. The mechanism was utilized to deliver a new anti-cancer combination therapy consisting of piperlongumine (PL) and TRAIL to treat PC3 prostate cancer and HCT116 colon cancer cells. PL, a small-molecule hydrophobic drug, was encapsulated in poly (lactic-co-glycolic acid) (PLGA) nanoparticles. TRAIL was chemically conjugated to the surface of liposomes. PL was first administered to sensitize cancer cells to the effects of TRAIL. PC3 and HCT116 cells had lower survival rates in vitro after receiving the dual nanoparticle therapy compared to each agent individually. In vivo testing involved a subcutaneous mouse xenograft model using NOD-SCID gamma mice and HCT116 cells. Two treatment cycles were administered over 48 hours. Higher apoptotic rates were observed for HCT116 tumor cells that received the dual nanoparticle therapy compared to individual stages of the nanoparticle therapy alone.


2018 ◽  
Vol 6 (16) ◽  
pp. 2413-2416 ◽  
Author(s):  
Mingxing Hu ◽  
Chao Yang ◽  
Yi Luo ◽  
Fan Chen ◽  
Fangfang Yang ◽  
...  

A novel hypoxia-specific and mitochondria-targeted theranostic agent,HMX-1, was reported with certified anti-cancer efficiencyin vitroandin vivo.


2019 ◽  
Vol 37 (15_suppl) ◽  
pp. e12523-e12523
Author(s):  
Khuloud Bajbouj ◽  
Jasmin Shafarin ◽  
Mawieh Hamad

e12523 Background: The fact that estrogen (17-β estradiol or E2) is a known carcinogen notwithstanding, mounting evidence suggest that E2 has the potential to exert anti-cancer effects against various forms of cancer. Using in vitro models we, and others, have previously demonstrated that E2 disrupts intracellular iron metabolism in such a way that arrests cell cycling in breast and ovarian cancer cells. However, the cellular and molecular correlates underlying this cytostatic effect of E2 in cancer cells remain elusive. Methods: In this study, metastatic (MDA-MB-231) and non-metastatic (MCF-7) breast cancer cells treated with 20 nM E2 were assessed for mitochondrial function, cell proliferation, apoptosis and senescence at different time points post treatment. Results: E2 treatment resulted in a significant mitochondrial membrane depolarization; an outcome that associated with a significant loss of mitochondrial function and the accumulation of auto-phagosomes. It also significantly upregulated the expression of the cell cycle regulating cyclin-dependent kinase inhibitor, p21 protein and enhanced the activation (de-phosphorylation) of the tumour suppressor retinoblastoma (Rb) protein. Although, as previously shown, E2 did not induced classis apoptosis; it resulted in a significant elevation in senescence-associated β- galactosidase levels. Conclusions: In summary, these findings suggest that E2 treatment mediates its anti-cancer potential by disrupting mitochondrial function and precipitating autophagy and cell senescence.


Sign in / Sign up

Export Citation Format

Share Document