Quantification of airborne dust, endotoxins, human pathogens and antibiotic and metal resistance genes in Eastern Canadian swine confinement buildings

Aerobiologia ◽  
2019 ◽  
Vol 35 (2) ◽  
pp. 283-296 ◽  
Author(s):  
Jonathan Pilote ◽  
Valérie Létourneau ◽  
Matthieu Girard ◽  
Caroline Duchaine
2016 ◽  
Vol 75 (s2) ◽  
Author(s):  
Andrea Di Cesare ◽  
Ester Eckert ◽  
Gianluca Corno

<p class="p1">Antibiotic resistant bacteria are found in most environments, especially in highly anthropized waters. A direct correlation between human activities (<em><span class="s1">e.g., </span></em>pollution) and spread and persistence of antibiotic resistant bacteria (ARB) and resistance genes (ARGs) within the resident bacterial communities appears more and more obvious. Furthermore, the threat posed for human health by the presence of ARB and ARGs in these environments is enhanced by the risk of horizontal gene transfer of resistance genes to human pathogens. Although the knowledge on the spread of antibiotic resistances in waters is increasing, the understanding of the driving factors determining the selection for antibiotic resistance in the environment is still scarce. Antibiotic pollution is generally coupled with contamination by heavy metals (HMs) and other chemicals, which can also promote the development of resistance mechanisms, often through co-selecting for multiple resistances. The co-selection of heavy metal resistance genes and ARGs in waters, sediments, and soils, increases the complexity of the ecological role of ARGs, and reduces the effectiveness of control actions. In this mini-review we present the state-of-the-art of the research on antibiotic- and HM-resistance and their connection in the environment, with a focus on HM pollution and aquatic environments. We review the spread and the persistence of HMs and/or ARB, and how it influences their respective gene co-selection. In the last chapter, we propose Lake Orta, a system characterized by an intensive HM pollution followed by a successful restoration of the chemistry of the water column, as a study-site to evaluate the spread and selection of HMs and antibiotic resistances in heavily disturbed environments.</p>


2018 ◽  
Author(s):  
G. A. Arango-Argoty ◽  
D. Dai ◽  
A. Pruden ◽  
P. Vikesland ◽  
L. S. Heath ◽  
...  

ABSTRACTDirect selection pressures imposed by antibiotics, indirect pressures by co-selective agents, and horizontal gene transfer are fundamental drivers of the evolution and spread of antibiotic resistance. Therefore, effective environmental monitoring tools should ideally capture not only antibiotic resistance genes (ARGs), but also mobile genetic elements (MGEs) and indicators of co-selective forces, such as metal resistance genes (MRGs). Further, a major challenge towards characterizing potential human risk is the ability to identify bacterial host organisms, especially human pathogens. Historically, short reads yielded by next-generation sequencing technology has hampered confidence in assemblies for achieving these purposes. Here we introduce NanoARG, an online computational resource that takes advantage of long reads produced by MinION nanopore sequencing. Specifically, long nanopore reads enable identification of ARGs in the context of relevant neighboring genes, providing relevant insight into mobility, co-selection, and pathogenicity. NanoARG allows users to upload sequence data online and provides various means to analyze and visualize the data, including quantitative and simultaneous profiling of ARG, MRG, MGE, and pathogens. NanoARG is publicly available and freely accessible at http://bench.cs.vt.edu/nanoARG.


Author(s):  
Е.Н. Ильина ◽  
Е.И. Олехнович ◽  
А.В. Павленко

С течением времени подходы к изучению резистентности к антибиотикам трансформировались от сосредоточения на выделенных в виде чистой культуры патогенных микроорганизмах к исследованию резистентности на уровне микробных сообществ, составляющих биотопы человека и окружающей среды. По мере того, как продвигается изучение устойчивости к антибиотикам, возникает необходимость использования комплексного подхода для улучшения информирования мирового сообщества о наблюдаемых тенденциях в этой области. Все более очевидным становится то, что, хотя не все гены резистентности могут географически и филогенетически распространяться, угроза, которую они представляют, действительно серьезная и требует комплексных междисциплинарных исследований. В настоящее время резистентность к антибиотикам среди патогенов человека стала основной угрозой в современной медицине, и существует значительный интерес к определению ниши, в которых бактерии могут получить гены антибиотикорезистентности, и механизмов их передачи. В данном обзоре мы рассматриваем проблемы, возникшие на фоне широкого использования человечеством антибактериальных препаратов, в свете формирования микрофлорой кишечника резервуара генов резистентности. Over the time, studies of antibiotic resistance have transformed from focusing on pathogenic microorganisms isolated as a pure culture to analysis of resistance at the level of microbial communities that constitute human and environmental biotopes. Advancing studies of antibiotic resistance require an integrated approach to enhance availability of information about observed tendencies in this field to the global community. It becomes increasingly obvious that, even though not all resistance genes can geographically and phylogenetically spread, the threat they pose is indeed serious and requires complex interdisciplinary research. Currently, the antibiotic resistance of human pathogens has become a challenge to modern medicine, which is now focusing on determining a potential source for bacterial genes of drug resistance and mechanisms for the gene transmission. In this review, we discussed problems generated by the widespread use of antibacterial drugs in the light of forming a reservoir of resistance genes by gut microflora.


Genes ◽  
2020 ◽  
Vol 11 (9) ◽  
pp. 1025
Author(s):  
Shaohua Zhao ◽  
Cong Li ◽  
Chih-Hao Hsu ◽  
Gregory H. Tyson ◽  
Errol Strain ◽  
...  

Salmonella is a leading cause of bacterial infections in animals and humans. We sequenced a collection of 450 Salmonella strains from diseased animals to better understand the genetic makeup of their virulence and resistance features. The presence of Salmonella pathogenicity islands (SPIs) varied by serotype. S. Enteritidis carried the most SPIs (n = 15), while S. Mbandaka, S. Cerro, S. Meleagridis, and S. Havana carried the least (n = 10). S. Typhimurium, S. Choleraesuis, S. I 4,5,12:i:-, and S. Enteritidis each contained the spv operon on IncFII or IncFII-IncFIB hybrid plasmids. Two S. IIIa carried a spv operon with spvD deletion on the chromosome. Twelve plasmid types including 24 hybrid plasmids were identified. IncA/C was frequently associated with S. Newport (83%) and S. Agona (100%) from bovine, whereas IncFII (100%), IncFIB (100%), and IncQ1 (94%) were seen in S. Choleraesuis from swine. IncX (100%) was detected in all S. Kentucky from chicken. A total of 60 antimicrobial resistance genes (ARGs), four disinfectant resistances genes (DRGs) and 33 heavy metal resistance genes (HMRGs) were identified. The Salmonella strains from sick animals contained various SPIs, resistance genes and plasmid types based on the serotype and source of the isolates. Such complicated genomic structures shed light on the strain characteristics contributing to the severity of disease and treatment failures in Salmonella infections, including those causing illnesses in animals.


1995 ◽  
Vol 18 (3) ◽  
pp. 191-203 ◽  
Author(s):  
Eva M. Top ◽  
Helene Rore ◽  
Jean-Marc Collard ◽  
Veerle Gellens ◽  
Galina Slobodkina ◽  
...  

2017 ◽  
Author(s):  
Christian Munck ◽  
Mostafa M. Hashim Ellabaan ◽  
Michael Schantz Klausen ◽  
Morten O.A. Sommer

AbstractGenes capable of conferring resistance to clinically used antibiotics have been found in many different natural environments. However, a concise overview of the resistance genes found in common human bacterial pathogens is lacking, which complicates risk ranking of environmental reservoirs. Here, we present an analysis of potential antibiotic resistance genes in the 17 most common bacterial pathogens isolated from humans. We analyzed more than 20,000 bacterial genomes and defined a clinical resistome as the set of resistance genes found across these genomes. Using this database, we uncovered the co-occurrence frequencies of the resistance gene clusters within each species enabling identification of co-dissemination and co-selection patterns. The resistance genes identified in this study represent the subset of the environmental resistome that is clinically relevant and the dataset and approach provides a baseline for further investigations into the abundance of clinically relevant resistance genes across different environments. To facilitate an easy overview the data is presented at the species level at www.resistome.biosustain.dtu.dk.


Sign in / Sign up

Export Citation Format

Share Document