A new chaotic system with hidden attractor and its engineering applications: analog circuit realization and image encryption

2018 ◽  
Vol 98 (1) ◽  
pp. 85-99 ◽  
Author(s):  
Ünal Çavuşoğlu ◽  
Shirin Panahi ◽  
Akif Akgül ◽  
Sajad Jafari ◽  
Sezgin Kaçar
2018 ◽  
Vol 7 (3) ◽  
pp. 1245 ◽  
Author(s):  
Aceng Sambas ◽  
Mustafa Mamat ◽  
Sundarapandian Vaidyanathan ◽  
Muhammad Mohamed ◽  
Mada Sanjaya

In the chaos literature, there is currently significant interest in the discovery of new chaotic systems with hidden chaotic attractors. A new 4-D chaotic system with only two quadratic nonlinearities is investigated in this work. First, we derive a no-equilibrium chaotic system and show that the new chaotic system exhibits hidden attractor. Properties of the new chaotic system are analyzed by means of phase portraits, Lyapunov chaos exponents, and Kaplan-Yorke dimension. Then an electronic circuit realization is shown to validate the chaotic behavior of the new 4-D chaotic system. Finally, the physical circuit experimental results of the 4-D chaotic system show agreement with numerical simulations.


2019 ◽  
Vol 9 (4) ◽  
pp. 781 ◽  
Author(s):  
Xiong Wang ◽  
Ünal Çavuşoğlu ◽  
Sezgin Kacar ◽  
Akif Akgul ◽  
Viet-Thanh Pham ◽  
...  

Chaotic systems without equilibrium are of interest because they are the systems with hidden attractors. A nonequilibrium system with chaos is introduced in this work. Chaotic behavior of the system is verified by phase portraits, Lyapunov exponents, and entropy. We have implemented a real electronic circuit of the system and reported experimental results. By using this new chaotic system, we have constructed S-boxes which are applied to propose a novel image encryption algorithm. In the designed encryption algorithm, three S-boxes with strong cryptographic properties are used for the sub-byte operation. Particularly, the S-box for the sub-byte process is selected randomly. In addition, performance analyses of S-boxes and security analyses of the encryption processes have been presented.


Entropy ◽  
2019 ◽  
Vol 21 (9) ◽  
pp. 819 ◽  
Author(s):  
Yaqin Xie ◽  
Jiayin Yu ◽  
Shiyu Guo ◽  
Qun Ding ◽  
Erfu Wang

In this paper, a new three-dimensional chaotic system is proposed for image encryption. The core of the encryption algorithm is the combination of chaotic system and compressed sensing, which can complete image encryption and compression at the same time. The Lyapunov exponent, bifurcation diagram and complexity of the new three-dimensional chaotic system are analyzed. The performance analysis shows that the chaotic system has two positive Lyapunov exponents and high complexity. In the encryption scheme, a new chaotic system is used as the measurement matrix for compressed sensing, and Arnold is used to scrambling the image further. The proposed method has better reconfiguration ability in the compressible range of the algorithm compared with other methods. The experimental results show that the proposed encryption scheme has good encryption effect and image compression capability.


Entropy ◽  
2021 ◽  
Vol 23 (9) ◽  
pp. 1127
Author(s):  
Yue Zhao ◽  
Lingfeng Liu

A chaotic system refers to a deterministic system with seemingly random irregular motion, and its behavior is uncertain, unrepeatable, and unpredictable. In recent years, researchers have proposed various image encryption schemes based on a single low-dimensional or high-dimensional chaotic system, but many algorithms have problems such as low security. Therefore, designing a good chaotic system and encryption scheme is very important for encryption algorithms. This paper constructs a new double chaotic system based on tent mapping and logistic mapping. In order to verify the practicability and feasibility of the new chaotic system, a displacement image encryption algorithm based on the new chaotic system was subsequently proposed. This paper proposes a displacement image encryption algorithm based on the new chaotic system. The algorithm uses an improved new nonlinear feedback function to generate two random sequences, one of which is used to generate the index sequence, the other is used to generate the encryption matrix, and the index sequence is used to control the generation of the encryption matrix required for encryption. Then, the encryption matrix and the scrambling matrix are XORed to obtain the first encryption image. Finally, a bit-shift encryption method is adopted to prevent the harm caused by key leakage and to improve the security of the algorithm. Numerical experiments show that the key space of the algorithm is not only large, but also the key sensitivity is relatively high, and it has good resistance to various attacks. The analysis shows that this algorithm has certain competitive advantages compared with other encryption algorithms.


2022 ◽  
Author(s):  
Shaohui Yan ◽  
Qiyu Wang ◽  
Ertong Wang ◽  
Xi Sun ◽  
Zhenlong Song

Abstract The definition of fractional calculus is introduced into the 5D chaotic system, and the 5D fractional-order chaotic system is obtained. The new 5D fractional-order chaotic system has no equilibrium, multi-scroll hidden attractor and multi-stability. By analyzing the time-domain waveform, phase diagram, bifurcation diagram and complexity, it is found that the system has no equilibrium but is very sensitive to parameters and initial values. With the variation of different parameters, the system can produce attractors of different scroll types accompanied by bursting oscillation. Secondly, the multi-stability of the hidden attractor is studied. Different initial values lead to the coexistence of attractors of different scroll number, which shows the advantages of the system. The correctness and realizability of the fractional-order chaotic system are proved by analog circuit and physical implement. Finally, because of the high security of multi-scroll attractor and hidden attractor, finite-time synchronization based on the fractional-order chaotic system is studied, which has a good application prospect in the field of secure communication.


2021 ◽  
Vol 233 ◽  
pp. 04002
Author(s):  
Hongyan Zang ◽  
Lili Huang ◽  
Yanling Wang ◽  
Tengfei Lei

In this paper, we study a memristor chaotic system with bias control. Based on the analysis of basic dynamic behavior, the hidden attractor coexistence and multi-stability of the non-equilibrium memristor chaotic system are verified, the bias control based on DC power control is studied, and the polarity control of the output variable is realized by using the change of parameters. The sinusoidal function is introduced as the bias periodic function, so that the system can realize signal polarity control only by changing the initial conditions. The analog circuit of memristor chaotic system is designed and verified by simulation..


2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Dongyao Zou ◽  
Ming Li ◽  
Jun Li ◽  
Zhigang Li

Aiming at the problem of a small parameter value range when a one-dimensional chaotic system presents a chaotic state, this paper proposes a new type of hybrid power exponential chaotic system (HPECS). HPECS combines the classic one-dimensional Sine chaotic system to form a new chaotic system (HPECS-SS). Experiments show that the obtained new chaotic system has better chaotic performance, a more extensive parameter value range, and higher sensitivity. Simultaneously, on the basis of HPECS-SS, a new image encryption algorithm is proposed. The algorithm uses the key generated by the SHA-512 algorithm and HPECS-SS to iteratively output the chaotic sequence, SFY algorithm combines the chaotic sequence to perform two rounds of scrambling on the plaintext sequence to obtain the scrambling sequence, and finally, through the modulus operation to diffuse the scrambling sequence to form the encryption matrix of the plaintext image, simulation experiment analysis shows that the algorithm has a large key space, good encryption effect, and security; the pixel change rate (NPCR) and the normalized average change intensity (UACI) are close to ideal values which can resist various cryptanalysis and attacks.


Entropy ◽  
2017 ◽  
Vol 20 (1) ◽  
pp. 12 ◽  
Author(s):  
Qiang Lai ◽  
Akif Akgul ◽  
Chunbiao Li ◽  
Guanghui Xu ◽  
Ünal Çavuşoğlu

Sign in / Sign up

Export Citation Format

Share Document