Analysis of Global and Local Hydrodynamic Instabilities on a High-Speed Jet Diffusion Flame via Time-Resolved 3D Measurements

Author(s):  
Rongxiao Dong ◽  
Qingchun Lei ◽  
Yeqing Chi ◽  
Erzhuang Song ◽  
Wei Fan
Author(s):  
Oleg Bostanjoglo ◽  
Peter Thomsen-Schmidt

Thin GexTe1-x (x = 0.15-0.8) were studied as a model substance of a composite semiconductor film, in addition being of interest for optical storage material. Two complementary modes of time-resolved TEM were used to trace the phase transitions, induced by an attached Q-switched (50 ns FWHM) and frequency doubled (532 nm) Nd:YAG laser. The laser radiation was focused onto the specimen within the TEM to a 20 μm spot (FWHM). Discrete intermediate states were visualized by short-exposure time doubleframe imaging /1,2/. The full history of a transformation was gained by tracking the electron image intensity with photomultiplier and storage oscilloscopes (space/time resolution 100 nm/3 ns) /3/. In order to avoid radiation damage by the probing electron beam to detector and specimen, the beam is pulsed in this continuous mode of time-resolved TEM,too.Short events ( <2 μs) are followed by illuminating with an extended single electron pulse (fig. 1c)


2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Sicong Wang ◽  
Chen Wei ◽  
Yuanhua Feng ◽  
Hongkun Cao ◽  
Wenzhe Li ◽  
...  

AbstractAlthough photonics presents the fastest and most energy-efficient method of data transfer, magnetism still offers the cheapest and most natural way to store data. The ultrafast and energy-efficient optical control of magnetism is presently a missing technological link that prevents us from reaching the next evolution in information processing. The discovery of all-optical magnetization reversal in GdFeCo with the help of 100 fs laser pulses has further aroused intense interest in this compelling problem. Although the applicability of this approach to high-speed data processing depends vitally on the maximum repetition rate of the switching, the latter remains virtually unknown. Here we experimentally unveil the ultimate frequency of repetitive all-optical magnetization reversal through time-resolved studies of the dual-shot magnetization dynamics in Gd27Fe63.87Co9.13. Varying the intensities of the shots and the shot-to-shot separation, we reveal the conditions for ultrafast writing and the fastest possible restoration of magnetic bits. It is shown that although magnetic writing launched by the first shot is completed after 100 ps, a reliable rewriting of the bit by the second shot requires separating the shots by at least 300 ps. Using two shots partially overlapping in space and minimally separated by 300 ps, we demonstrate an approach for GHz magnetic writing that can be scaled down to sizes below the diffraction limit.


2010 ◽  
Vol 1 (SRMS-7) ◽  
Author(s):  
David Pennicard ◽  
Heinz Graafsma ◽  
Michael Lohmann

The new synchrotron light source PETRA-III produced its first beam last year. The extremely high brilliance of PETRA-III and the large energy range of many of its beamlines make it useful for a wide range of experiments, particularly in materials science. The detectors at PETRA-III will need to meet several requirements, such as operation across a wide dynamic range, high-speed readout and good quantum efficiency even at high photon energies. PETRA-III beamlines with lower photon energies will typically be equipped with photon-counting silicon detectors for two-dimensional detection and silicon drift detectors for spectroscopy and higher-energy beamlines will use scintillators coupled to cameras or photomultiplier tubes. Longer-term developments include ‘high-Z’ semiconductors for detecting high-energy X-rays, photon-counting readout chips with smaller pixels and higher frame rates and pixellated avalanche photodiodes for time-resolved experiments.


2006 ◽  
Vol 59 (2) ◽  
pp. 81 ◽  
Author(s):  
Ales Charvat ◽  
Andreas Bógehold ◽  
Bernd Abel

Liquid water beam desorption mass spectrometry is an intriguing technique to isolate charged molecular aggregates directly from the liquid phase and to analyze them employing sensitive mass spectrometry. The liquid phase in this approach consists of a 10 µm diameter free liquid filament in vacuum which is irradiated by a focussed infrared laser pulse resonant with the OH-stretch vibration of bulk water. Depending upon the laser wavelength, charged (e.g. protonated) macromolecules are isolated from solution through a still poorly characterized mechanism. After the gentle liquid-to-vacuum transfer the low-charge-state aggregates are analyzed using time-of-flight mass spectrometry. A recent variant of the technique uses high performance liquid chromatography valves for local liquid injections of samples in the liquid carrier beam, which enables very low sample consumption and high speed sample analysis. In this review we summarize recent work to characterize the ‘desorption’ or ion isolation mechanism in this type of experiment. A decisive and interesting feature of micro liquid beam desorption mass spectrometry is that — under certain conditions — the gas-phase mass signal for a large number of small as well as supramolecular systems displays a surprisingly linear response on the solution concentration over many orders of magnitude, even for mixtures and complex body fluids. This feature and the all-liquid state nature of the technique makes this technique a solution-type spectroscopy that enables real kinetic studies involving (bio)polymers in solution without the need for internal standards. Two applications of the technique monitoring enzyme digestion of proteins and protein aggregation of an amyloid model system are highlighted, both displaying its potential for monitoring biokinetics in solution.


Author(s):  
Michael Stöhr ◽  
Kilian Oberleithner ◽  
Moritz Sieber ◽  
Zhiyao Yin ◽  
Wolfgang Meier

Sudden changes of flame shape are an undesired, yet poorly understood feature of swirl combustors used in gas turbines. The present work studies flame shape transition mechanisms of a bistable turbulent swirl flame in a gas turbine model combustor, which alternates intermittently between an attached V-form and a lifted M-form. Time-resolved velocity fields and 2D flame structures were measured simultaneously using high-speed stereo-PIV and OH-PLIF at 10 kHz. The data analysis is performed using two novel methods that are well adapted to the study of transient flame shape transitions: Firstly, the linear stability analysis (LSA) of a time-varying mean flow and secondly the recently proposed spectral proper orthogonal decomposition (SPOD). The results show that the transitions are governed by two types of instability, namely a hydrodynamic instability in the form of a precessing vortex core (PVC) and a thermoacoustic (TA) instability. The LSA shows that the V-M transition implies the transient formation of a PVC as the result of a self-amplification process. The V-M transition, on the other hand, is induced by the appearance of a TA instability that suppresses the PVC and thereby modifies the flow field such that the flame re-attaches at the nozzle. In summary these results provide novel insights into the complex interactions of TA and hydrodynamic instabilities that govern the shape of turbulent swirl-stabilized flames.


2014 ◽  
Vol 137 (4) ◽  
Author(s):  
David Tan ◽  
Yuanchao Li ◽  
Ian Wilkes ◽  
Rinaldo L. Miorini ◽  
Joseph Katz

A new optically index matched facility has been constructed to investigate tip flows in compressor-like settings. The blades of the one and a half stage compressor have the same geometry, but lower aspect ratio as the inlet guide vanes (IGVs) and the first stage of the low-speed axial compressor (LSAC) facility at NASA Glenn. With transparent blades and casings, the new setup enables unobstructed velocity measurements at any point within the tip region and is designed to facilitate direct measurements of effects of casing treatments on the flow structure. We start with a smooth endwall casing. High speed movies of cavitation and time-resolved PIV measurements have been used to characterize the location, trajectory, and behavior of the tip leakage vortex (TLV) for two flow rates, the lower one representing prestall conditions. Results of both methods show consistent trends. As the flow rate is reduced, TLV rollup occurs further upstream, and its initial orientation becomes more circumferential. At prestall conditions, the TLV is initially aligned slightly upstream of the rotor passage, and subsequently forced downstream. Within the passage, the TLV breaks up into a large number of vortex fragments, which occupy a broad area. Consequently, the cavitation in the TLV core disappears. With decreasing flow rate, this phenomenon becomes more abrupt, occurs further upstream, and the fragments occupy a larger area.


Author(s):  
John A. O'Dowd ◽  
Vivian M. Bessler ◽  
Selwan K. Ibrahim ◽  
Anthony J. Walsh ◽  
F. H. Peters ◽  
...  

Author(s):  
Xin Yuan ◽  
Guo Liu ◽  
Kun Hui Ye

The small-world model provides a useful perspective and method to study the topological structure and intrinsic characteristics of high-speed rail networks (HRNs). In this paper, the P-space method is used to examine global and local HRNs in China, meanwhile the adjacency matrix is developed, then the social network analysis and visualization tool UCINET is used to calculate the spatial and attribute data of HRNs at national and local levels in China. The small-world characteristics of whole HRNs are discussed, three networks which have different properties are determined, and a comparative analysis of the small-world effect is detected. Then, the relationship between the construction of high-speed rail and regional development of China is analysed. The results show that: 1) China's HRNs have small average path length ( L ) and large clustering coefficient (C ), representing a typical small-world network; 2) Local HRNs have a certain correlation with economic development. The reasons for the difference of HRNs with respect to characteristics among regions are eventually discussed.


2017 ◽  
Vol 140 (3) ◽  
Author(s):  
Husain Al Hashimi ◽  
Caleb F. Hammer ◽  
Michel T. Lebon ◽  
Dan Zhang ◽  
Jungho Kim

Techniques based on temperature-sensitive paints (TSP) to measure time-resolved temperature and heat transfer distributions at the interface between a wall and fluid during pool and flow boiling are described. The paints are excited using ultraviolet (UV) light emitting diodes (LEDs), and changes in fluorescence intensity are used to infer local temperature differences across a thin insulator from which heat flux distribution is obtained. Advantages over infrared (IR) thermometry include the ability to use substrates that are opaque to IR (e.g., glass, plexiglass and plastic films), use of low-cost optical cameras, no self-emission from substrates to complicate data interpretation, high speed, and high spatial resolution. TSP-based methods to measure wall heat transfer distributions are validated and then demonstrated for pool and flow boiling.


Sign in / Sign up

Export Citation Format

Share Document