Cylindrically symmetric cosmological model of the universe in modified gravity

2017 ◽  
Vol 362 (2) ◽  
Author(s):  
B. Mishra ◽  
Samhita Vadrevu
10.29007/xqpk ◽  
2020 ◽  
Author(s):  
Van On Vo

In this paper, we investigate the linear perturbation of the material density of the universe in f(R) modified gravity of polynomial exponential form on the scale of distance below the cosmic horizon (sub-horizon). The results show that the model for the evolutionary aspects of the universe is slightly different from that in the standard cosmological model of ΛCDM. They can be used to show the difference between this modified gravitational model with the standard cosmological model of ΛCMD and other cosmological models. We also investigate the ration Ψ/ Φ and Geff / GN in the model and show that they are within allowable limits of experiments.


Universe ◽  
2021 ◽  
Vol 7 (7) ◽  
pp. 226
Author(s):  
Rishi Kumar Tiwari ◽  
Aroonkumar Beesham ◽  
Soma Mishra ◽  
Vipin Dubey

Current observations indicate that, on a large enough scale, the universe is homogeneous and isotropic. However, this does not preclude the possibility of some anisotropy having occurred during the early stages of the evolution of the universe, which could then have been damped out later. This idea has aroused interest in the Bianchi models, which are homogeneous but anisotropic. Secondly, there is much interest in modified gravity these days due to the problems that the usual ΛCDM model faces in general relativity. Hence, in this paper, a study was conducted on the Bianchi type-I cosmological model in f(R,T)-modified gravity. Following some ideas from cosmography, a specific form of the deceleration parameter was assumed, leading to a model that exhibited a transition from early deceleration to late-time acceleration. The derived model approached isotropy at late times. The physical properties of the model were discussed, and expressions for the various parameters of the model were derived. It is also possible to make progress towards solving the cosmological constant problem, since in this model in f(R,T) gravity, a variable cosmological-type parameter arose, which was large early on but decreased to a constant value in later times.


2018 ◽  
Vol 15 (07) ◽  
pp. 1850115 ◽  
Author(s):  
Rishi Kumar Tiwari ◽  
Aroonkumar Beesham ◽  
Bhupendra Shukla

A study is made of the LRS Bianchi type-I cosmological model in [Formula: see text] modified gravity theory. Einstein’s field equations in [Formula: see text] gravity are solved by taking [Formula: see text] and the deceleration parameter [Formula: see text] to be a linear function of the Hubble parameter [Formula: see text]. The universe begins with an initial singular state and changes with time from an early deceleration phase to a late time acceleration phase. We have found that the jerk parameter [Formula: see text] in the model approaches that of the [Formula: see text] model at late times. We also discuss the physical and geometrical properties of the model.


Author(s):  
Nathalie Deruelle ◽  
Jean-Philippe Uzan

This chapter provides a few examples of representations of the universe on a large scale—a first step in constructing a cosmological model. It first discusses the Copernican principle, which is an approximation/hypothesis about the matter distribution in the observable universe. The chapter then turns to the cosmological principle—a hypothesis about the geometry of the Riemannian spacetime representing the universe, which is assumed to be foliated by 3-spaces labeled by a cosmic time t which are homogeneous and isotropic, that is, ‘maximally symmetric’. After a discussion on maximally symmetric space, this chapter considers spacetimes with homogenous and isotropic sections. Finally, this chapter discusses Milne and de Sitter spacetimes.


2020 ◽  
Vol 98 (11) ◽  
pp. 1015-1022 ◽  
Author(s):  
Parbati Sahoo ◽  
Barkha Taori ◽  
K.L. Mahanta

We construct a locally rotationally symmetric (LRS) Bianchi type-I cosmological model in f(R, T) theory of gravity when the source of gravitation is a mixture of barotropic fluid and dark energy (DE) by employing a time-varying deceleration parameter. We observe through the behavior of the state finder parameters (r, s) that our model begins from the Einstein static era and goes to ΛCDM era. The equation of state (EOS) parameter (ωd) for DE varies from the phantom (ω < –1) phase to quintessence (ω > –1) phase, which is consistent with observational results. It is found that the discussed model can reproduce the current accelerating phase of the expansion of the universe.


2016 ◽  
Vol 13 (05) ◽  
pp. 1650058 ◽  
Author(s):  
Gyan Prakash Singh ◽  
Binaya Kumar Bishi ◽  
Pradyumn Kumar Sahoo

In this paper, we have studied the Bianchi type-III cosmological model in the presence of cosmological constant in the context of [Formula: see text] modified theory of gravity. Here, we have discussed two classes of [Formula: see text] gravity, i.e. [Formula: see text] and [Formula: see text]. In both classes, the modified field equations are solved by the relation expansion scalar [Formula: see text] that is proportional to shear scalar [Formula: see text] which gives [Formula: see text], where [Formula: see text] and [Formula: see text] are metric potentials. Also we have discussed some physical and kinematical properties of the models.


2021 ◽  
Vol 2090 (1) ◽  
pp. 012063
Author(s):  
Koblandy Yerzhanov ◽  
Gulnur Bauyrzhan ◽  
Ratbay Myrzakulov

Abstract We investigated the gravity model F (R, T), which interacts with a fermion field in a uniform and isotropic at spacetime FLRW. The main idea and purpose of the work donewas to create a mathematical model and find a particular solution for the scale factor a, since it describes the dynamics of the evolution of the Universe. The solutions for this universe are obtained using the Noether symmetry method. With its help, a specific form of the Lagrangian is obtained. And the possible types of the scale factor were found. The evolution of the resulting cosmological model has been investigated.


Author(s):  
Francisco César de Sá Barreto ◽  
Luiz Paulo Ribeiro Vaz ◽  
Gabriel Armando Pellegatti Franco

The standard cosmological model suggests that after the “Big Bang”, 14 billion of years ago, the universe entered a period of expansion and cooling. In the first one millionth of a second appear quarks, glúons, electrons and neutrinos, followed by the appearance of protons and neutrons. In this paper, we describe the “cosmic battle” between gravitation and energy, responsible for the lighter chemical elements and the formation of the stars. We describe the thermodynamics of irreversible processes of systems which are far away from equilibrium, a route that is followed by the universe, seen as a living system.


KronoScope ◽  
2014 ◽  
Vol 14 (1) ◽  
pp. 71-89 ◽  
Author(s):  
Ettore Minguzzi

Abstract This paper proposes a cosmological model that uses a causality argument to solve the homogeneity and entropy problems of cosmology. In this model, a chronology violating region of spacetime causally precedes the remainder of the Universe, and a theorem establishes the existence of time functions precisely outside the chronology violating region. This model is shown to nicely reproduce Augustine of Hippo’s thought on time and the beginning of the Universe. In the model, the spacelike boundary representing the Big Bang is replaced by a null hypersurface at which the gravitational degrees of freedom are almost frozen while the matter and radiation content is highly homogeneous and thermalized.


2011 ◽  
Vol 01 ◽  
pp. 228-233
Author(s):  
YUNGUI GONG

The growth rate of matter perturbation and the expansion rate of the Universe can be used to distinguish modified gravity and dark energy models. Remarkably, the growth rate can be approximated as Ωγ. We discuss the dependence of the growth index γ on the dimensionless matter energy density Ω for a more accurate approximation of the growth factor. The observational data are used to fit different models. The data strongly disfavor the Dvali-Gabadadze-Porrati model. For the ΛCDM model, we find that [Formula: see text]. For the Dvali-Gabadadze-Porrati model, we find that [Formula: see text].


Sign in / Sign up

Export Citation Format

Share Document