Relations of mineral-soil C and N to climate and texture: regional differences within the conterminous USA

2007 ◽  
Vol 85 (3) ◽  
pp. 303-316 ◽  
Author(s):  
Peter S. Homann ◽  
Jason S. Kapchinske ◽  
Andrew Boyce
2004 ◽  
Vol 34 (3) ◽  
pp. 509-518 ◽  
Author(s):  
J Bauhus ◽  
T Vor ◽  
N Bartsch ◽  
A Cowling

Despite the importance of gaps in the dynamics and management of many forest types, very little is known about the medium- to long-term soil C and N dynamics associated with this disturbance. This study was designed to test the hypothesis that gap creation and lime application, a routine measure in many European forests to ameliorate soil acidity, lead to accelerated litter decomposition and thus a reduction in the forest floor and soil C and N pools. Four gaps were created in 1989 in a mature European beech (Fagus sylvatica L.) forest on acid soil with a moder humus, and lime (3 t dolomite·ha–1) was applied to two of these and surrounding areas. Litter and fine-root decomposition was measured in 1992–1993 and 1996–1998 using litterbags. Forest floor (L, F, and H layers) and mineral soil (0–40 cm) C and N pools were determined in 1989 and 1997. Eight years following silvicultural treatments, there was no change in C and N over the entire forest soil profile including forest floor. Reductions in the F and H layers in limed gaps were compensated for by increases in soil C and N in the surface (0–10 cm) mineral soil. Decomposition of F litter was significantly accelerated in limed gaps, leading to the development of a mull–moder, whereas gap creation alone had no effect on mass loss of F material in litterbags. Gap size disturbances in this acid beech forest appear to have minimal influences on soil C and N stocks. However, when combined with liming, changes in the humus form and vertical distribution of soil C and N may occur.


2021 ◽  
Author(s):  
David Pessanha Siqueira ◽  
Emanuela Forestieri Gama-Rodrigues ◽  
Marcos Vinícius Winckler Caldeira ◽  
Carlos Eduardo Rezende ◽  
Claudio Roberto Marciano ◽  
...  

Abstract Aims Atlantic Rainforest biome is one of the most threatened in the world by deforestation where afforestation programs are urgently needed. N-fixing species should be prioritized in re-establishing forest covers as they can enhance soil C and N and stimulate cycling of other nutrients. Yet, tropical ecosystems play a key role in global warming and remain underestimated in the global biogeochemical balances. We aimed to investigate the effects of tropical N-fixing species on soil C and N pools after pasture conversionMethods We selected: Plathymenia reticulata, Hymenaea courbaril, and Centrolobium tomentosum 27-year-old monospecific stands. We evaluated soil organic carbon (SOC), nitrogen (STN), and the natural abundance of 13C and 15N in the soil profile up to 100 cm depth. Results SOC was higher for P. reticulata, but an opposite pattern was observed when combining only soil layers up to 30 cm soil depth. Meanwhile, STN was similar across species and d15N values showed enrichment at intermediate soil layers indicating 14N gaseous loss. Most of the SOC originated from the planted trees rather than the former pasture, except beneath C. tomentosum where C4 derived C is decreasing at a slower rate. Conclusion This study presents novel insights in the understanding of tropical N-fixing species effects on soil C and N where specific-species traits appear to mediate SOC retention to the mineral soil rather than the N-fixing ability per se.


Soil Research ◽  
2011 ◽  
Vol 49 (6) ◽  
pp. 494 ◽  
Author(s):  
R. L. Parfitt ◽  
D. J. Ross

Planting of Pinus radiata D. Don in previously grazed pastures is a common land-use change in New Zealand. Although carbon (C) accumulates relatively rapidly in the trees, there have been no studies of the annual effect on soil C content during the early years of establishment. Here, we study soil properties under P. radiata and pasture each year over 11 years after P. radiata was planted into pasture that had been grazed by sheep. Under the growing trees, grass was gradually shaded out by the unpruned trees, and completely disappeared after 6 years; needle litterfall had then increased appreciably. By year 9, soil microbial C and nitrogen (N), and net N mineralisation, were significantly lower under pine than under pasture. Soil pH, sampled at 0–100 mm in early spring each year, decreased by ~0.3 units under pine and increased by ~0.3 units under pasture. Close to the pine stems, total C and N decreased significantly for 3 years, while ~100 kg N/ha accumulated in the trees. Soil C and N increased in subsequent years, when litterfall increased. Overall, the mineral soil under pine lost ~500 kg N/ha over 11 years, consistent with uptake by the trees. Leaching losses (estimated using lysimeters) in year 9 were 4.5 kg N/ha.year. These data indicate that ~6 Mg C/ha may have been lost from the mineral soil at this site. The difficulties associated with measuring losses of C are discussed.


2019 ◽  
Vol 28 (10) ◽  
pp. 814 ◽  
Author(s):  
Derek N. Pierson ◽  
Peter R. Robichaud ◽  
Charles C. Rhoades ◽  
Robert E. Brown

Erosion of soil carbon (C) and nitrogen (N) following severe wildfire may have deleterious effects on downstream resources and ecosystem recovery. Although C and N losses in combustion and runoff have been studied extensively, soil C and N transported by post-fire erosion has rarely been quantified in burned landscapes. To better understand the magnitude and temporal pattern of these losses, we analysed the C and N content of sediment collected in severely burned hillslopes and catchments across the western USA over the first 4 post-fire years. We also compared soil C and N losses from areas receiving common erosion-mitigation treatments and untreated, burned areas. The concentrations of C and N in the eroded material (0.23–0.98gCkg−1 and 0.01–0.04gNkg−1) were similar to those of mineral soils rather than organic soil horizons or combusted vegetation. Losses of eroded soil C and N were highly variable across sites, and were highest the first 2 years after fire. Cumulative erosional losses from untreated, burned areas ranged from 73 to 2253kgCha−1 and from 3.3 to 110kgNha−1 over 4 post-fire years. Post-fire erosion-mitigation treatments reduced C and N losses by up to 75% compared with untreated areas. Losses in post-fire erosion are estimated to be <10% of the total soil C and N combusted during severe wildfire and <10% of post-fire soil C and N stocks remaining in the upper 20cm of mineral soil. Although loss of soil C and N in post-fire erosion is unlikely to impair the productivity of recovering vegetation, export of C and N may influence downstream water quality and aquatic ecosystems.


2006 ◽  
Vol 36 (3) ◽  
pp. 565-576 ◽  
Author(s):  
Felipe G Sanchez ◽  
Allan E Tiarks ◽  
J Marty Kranabetter ◽  
Deborah S Page-Dumroese ◽  
Robert F Powers ◽  
...  

This study describes the main treatment effects of organic matter removal and compaction and a split-plot effect of competition control on mineral soil carbon (C) and nitrogen (N) pools. Treatment effects on soil C and N pools are discussed for 19 sites across five locations (British Columbia, Northern Rocky Mountains, Pacific Southwest, and Atlantic and Gulf coasts) that are part of the Long-Term Soil Productivity (LTSP) network and were established over 5 years ago. The sites cover a broad range of soil types, climatic conditions, and tree species. Most sites showed increased soil C and N levels 5 years after study establishment; however, the rate and magnitude of the changes varied between sites. Organic matter removal, compaction, or competition control did not significantly affect soil C and N contents at any site, except for the Northern Rocky Mountain site, where competition control significantly affected soil C and N contents. The observation that, after 5 years, the soil C and N contents were not negatively affected by even the extreme treatments demonstrates the high resiliency of the soil, at least in the short term, to forest management perturbations.


2020 ◽  
Author(s):  
Sonia C. Clemens ◽  
◽  
Mia Brkljaca ◽  
Delaina Pearson ◽  
C. Brannon Andersen

2021 ◽  
Vol 11 (5) ◽  
pp. 2139
Author(s):  
Junliang Zou ◽  
Bruce Osborne

The importance of labile soil carbon (C) and nitrogen (N) in soil biogeochemical processes is now well recognized. However, the quantification of labile soil C and N in soils and the assessment of their contribution to ecosystem C and N budgets is often constrained by limited information on spatial variability. To address this, we examined spatial variability in dissolved organic carbon (DOC) and dissolved total nitrogen (DTN) in a Sitka spruce forest in central Ireland. The results showed moderate variations in the concentrations of DOC and DTN based on the mean, minimum, and maximum, as well as the coefficients of variation. Residual values of DOC and DTN were shown to have moderate spatial autocorrelations, and the nugget sill ratios were 0.09% and 0.10%, respectively. Distribution maps revealed that both DOC and DTN concentrations in the study area decreased from the southeast. The variability of both DOC and DTN increased as the sampling area expanded and could be well parameterized as a power function of the sampling area. The cokriging technique performed better than the ordinary kriging for predictions of DOC and DTN, which are highly correlated. This study provides a statistically based assessment of spatial variations in DOC and DTN and identifies the sampling effort required for their accurate quantification, leading to improved assessments of forest ecosystem C and N budgets.


Geoderma ◽  
2021 ◽  
Vol 399 ◽  
pp. 115109
Author(s):  
Paul L. Mudge ◽  
Jamie Millar ◽  
Jack Pronger ◽  
Alesha Roulston ◽  
Veronica Penny ◽  
...  
Keyword(s):  
Soil C ◽  

2018 ◽  
Vol 45 ◽  
pp. 00085
Author(s):  
Izabela Sówka ◽  
Yaroslav Bezyk ◽  
Maxim Dorodnikov

An assessment of C and N balance in urban soil compared to the natural environment was carried out to evaluate the influence of biological processes along with human-induced forcing. Soil C and N stocks were quantified on the samples (n=18) collected at 5 - 10 cm depth from dominated green areas and arable lands in the city of Wroclaw (Poland) and the relatively natural grassland located ca. 36 km south-west. Higher soil carbon and nitrogen levels (C/N ratio = 11.8) and greater microbial biomass C and N values (MBC = 95.3, MBN = 14.4 mg N kg-1) were measured in natural grassland compared with the citywide lawn sites (C/N ratio = 15.17, MBC = 84.3 mg C kg-1, MBN = 11.9 mg N kg-1), respectively. In contrast to the natural areas, the higher C and N concentration was measured in urban grass dominated soils (C = 2.7 % and N = 0.18 % of dry mass), which can be explained mainly due to the high soil bulk density and water holding capacity (13.8 % clay content). The limited availability of soil C and N content was seen under the arable soil (C = 1.23 %, N = 0.13 %) than in the studied grasslands. In fact, the significantly increased C/N ratios in urban grasslands are largely associated with land conversion and demonstrate that urban soils have the potential to be an important reservoir of C.


2016 ◽  
Vol 2 (4) ◽  
pp. 165-182 ◽  
Author(s):  
Chelsea L. Petrenko ◽  
Julia Bradley-Cook ◽  
Emily M. Lacroix ◽  
Andrew J. Friedland ◽  
Ross A. Virginia

Shrub species are expanding across the Arctic in response to climate change and biotic interactions. Changes in belowground carbon (C) and nitrogen (N) storage are of global importance because Arctic soils store approximately half of global soil C. We collected 10 (60 cm) soil cores each from graminoid- and shrub-dominated soils in western Greenland and determined soil texture, pH, C and N pools, and C:N ratios by depth for the mineral soil. To investigate the relative chemical stability of soil C between vegetation types, we employed a novel sequential extraction method for measuring organo-mineral C pools of increasing bond strength. We found that (i) mineral soil C and N storage was significantly greater under graminoids than shrubs (29.0 ± 1.8 versus 22.5 ± 3.0 kg·C·m−2 and 1.9 ± .12 versus 1.4 ± 1.9 kg·N·m−2), (ii) chemical mechanisms of C storage in the organo-mineral soil fraction did not differ between graminoid and shrub soils, and (iii) weak adsorption to mineral surfaces accounted for 40%–60% of C storage in organo-mineral fractions — a pool that is relatively sensitive to environmental disturbance. Differences in these C pools suggest that rates of C accumulation and retention differ by vegetation type, which could have implications for predicting future soil C pool storage.


Sign in / Sign up

Export Citation Format

Share Document