scholarly journals Afforestation With Tropical N-Fixing Species in The Brazilian Atlantic Rainforest: Carbon and Nitrogen in The Soil Profile

Author(s):  
David Pessanha Siqueira ◽  
Emanuela Forestieri Gama-Rodrigues ◽  
Marcos Vinícius Winckler Caldeira ◽  
Carlos Eduardo Rezende ◽  
Claudio Roberto Marciano ◽  
...  

Abstract Aims Atlantic Rainforest biome is one of the most threatened in the world by deforestation where afforestation programs are urgently needed. N-fixing species should be prioritized in re-establishing forest covers as they can enhance soil C and N and stimulate cycling of other nutrients. Yet, tropical ecosystems play a key role in global warming and remain underestimated in the global biogeochemical balances. We aimed to investigate the effects of tropical N-fixing species on soil C and N pools after pasture conversionMethods We selected: Plathymenia reticulata, Hymenaea courbaril, and Centrolobium tomentosum 27-year-old monospecific stands. We evaluated soil organic carbon (SOC), nitrogen (STN), and the natural abundance of 13C and 15N in the soil profile up to 100 cm depth. Results SOC was higher for P. reticulata, but an opposite pattern was observed when combining only soil layers up to 30 cm soil depth. Meanwhile, STN was similar across species and d15N values showed enrichment at intermediate soil layers indicating 14N gaseous loss. Most of the SOC originated from the planted trees rather than the former pasture, except beneath C. tomentosum where C4 derived C is decreasing at a slower rate. Conclusion This study presents novel insights in the understanding of tropical N-fixing species effects on soil C and N where specific-species traits appear to mediate SOC retention to the mineral soil rather than the N-fixing ability per se.

2021 ◽  
Vol 896 (1) ◽  
pp. 012022
Author(s):  
H A Umar ◽  
Endiyani ◽  
S Agustina ◽  
Irhami ◽  
C Anwar ◽  
...  

Abstract Research to find out how big the potential of soil carbon in agroforestry vegetation in Aceh Besar regency. This research was conducted on agroforestry vegetation on dry land in the Aceh Besar regency. Content carbon on the type of agroforestry land-use, two samples were taken each composite soil on depth 0-5 cm, 5-10 cm, 10-20 cm, 20-30 cm, 30-70 cm and 70-100. For the analysis of carbon content, activities are carried out in the soil laboratory and plants of the Faculty of Agriculture, Syiah Kuala University. The carbon content in agroforestry vegetation is quite high, and this can be described in the percentage of carbon which has a classification from high to very low. Soil depth 0-5 cm has a carbon percentage with a high classification value of 3.40 and at a depth of 30-70 cm has the lowest % C value of 0.35% with a very low classification. tends to increase soil C and N through increased root complementarity, lower underground competition.


2004 ◽  
Vol 34 (3) ◽  
pp. 509-518 ◽  
Author(s):  
J Bauhus ◽  
T Vor ◽  
N Bartsch ◽  
A Cowling

Despite the importance of gaps in the dynamics and management of many forest types, very little is known about the medium- to long-term soil C and N dynamics associated with this disturbance. This study was designed to test the hypothesis that gap creation and lime application, a routine measure in many European forests to ameliorate soil acidity, lead to accelerated litter decomposition and thus a reduction in the forest floor and soil C and N pools. Four gaps were created in 1989 in a mature European beech (Fagus sylvatica L.) forest on acid soil with a moder humus, and lime (3 t dolomite·ha–1) was applied to two of these and surrounding areas. Litter and fine-root decomposition was measured in 1992–1993 and 1996–1998 using litterbags. Forest floor (L, F, and H layers) and mineral soil (0–40 cm) C and N pools were determined in 1989 and 1997. Eight years following silvicultural treatments, there was no change in C and N over the entire forest soil profile including forest floor. Reductions in the F and H layers in limed gaps were compensated for by increases in soil C and N in the surface (0–10 cm) mineral soil. Decomposition of F litter was significantly accelerated in limed gaps, leading to the development of a mull–moder, whereas gap creation alone had no effect on mass loss of F material in litterbags. Gap size disturbances in this acid beech forest appear to have minimal influences on soil C and N stocks. However, when combined with liming, changes in the humus form and vertical distribution of soil C and N may occur.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Jian-Ping Li ◽  
Hong-Bin Ma ◽  
Ying-Zhong Xie ◽  
Kai-Bo Wang ◽  
Kai-Yang Qiu

Abstract Fencing for grazing exclusion has been widely found to have an impact on grassland soil organic carbon (SOC) and total nitrogen (TN), but little is known about the impact of fenced grassland on the changes in deep soil carbon (C) and nitrogen (N) stocks in temperate grasslands. We studied the influence of 30 years fencing on vegetation and deep soil characteristics (0–500 cm) in the semi-arid grasslands of northern China. The results showed that fencing significantly increased the aboveground biomass (AGB), litter biomass (LB), total biomass, vegetation coverage and height, and soil water content and the SOC and TN in the deep soil. The belowground biomass (BGB) did not significantly differ between the fenced and grazed grassland. However, fencing significantly decreased the root/shoot ratio, forbs biomass, pH, and soil bulk density. Meanwhile, fencing has significantly increased the C and N stocks in the AGB and LB but not in the BGB. After 30 years of fencing, the C and N stocks significantly increased in the 0–500 cm soil layer. The accumulation of SOC mainly occurred in the deep layers (30–180 cm), and the accumulation of TN occurred in the soil layers of 0 to 60 cm and 160 to 500 cm. Our results indicate that fencing is an effective way to improve deep soil C and N stocks in temperate grassland of northwest China. There were large C and N stocks in the soil layers of 100 to 500 cm in the fenced grasslands, and their dynamics should not be ignored.


2007 ◽  
Vol 85 (3) ◽  
pp. 303-316 ◽  
Author(s):  
Peter S. Homann ◽  
Jason S. Kapchinske ◽  
Andrew Boyce

Soil Research ◽  
2011 ◽  
Vol 49 (6) ◽  
pp. 494 ◽  
Author(s):  
R. L. Parfitt ◽  
D. J. Ross

Planting of Pinus radiata D. Don in previously grazed pastures is a common land-use change in New Zealand. Although carbon (C) accumulates relatively rapidly in the trees, there have been no studies of the annual effect on soil C content during the early years of establishment. Here, we study soil properties under P. radiata and pasture each year over 11 years after P. radiata was planted into pasture that had been grazed by sheep. Under the growing trees, grass was gradually shaded out by the unpruned trees, and completely disappeared after 6 years; needle litterfall had then increased appreciably. By year 9, soil microbial C and nitrogen (N), and net N mineralisation, were significantly lower under pine than under pasture. Soil pH, sampled at 0–100 mm in early spring each year, decreased by ~0.3 units under pine and increased by ~0.3 units under pasture. Close to the pine stems, total C and N decreased significantly for 3 years, while ~100 kg N/ha accumulated in the trees. Soil C and N increased in subsequent years, when litterfall increased. Overall, the mineral soil under pine lost ~500 kg N/ha over 11 years, consistent with uptake by the trees. Leaching losses (estimated using lysimeters) in year 9 were 4.5 kg N/ha.year. These data indicate that ~6 Mg C/ha may have been lost from the mineral soil at this site. The difficulties associated with measuring losses of C are discussed.


Forests ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 144
Author(s):  
Tianyang Li ◽  
Jiangmin Zeng ◽  
Binghui He ◽  
Zhanpeng Chen

This study aims to investigate the roles of slope aspect, land use and soil depth in altering the soil organic carbon (C), total nitrogen (N), and total phosphorus (P) traits in the karst trough valley area experiencing extensive ecological restoration. A total of 54 soil samples were collected at 0–10, 10–20, and 20–30 cm soil depths from secondary forest, plantation forest, and grassland on the relatively more shaded east-facing slope and the contrasting west-facing slope, respectively. The independent and interactive effects of slope aspect, land use, and soil depth on soil C, N, and P concentrations and stoichiometry were determined. The results show that soil C and N concentrations were markedly higher on the east-facing slope than on the west-facing slope, and soil P concentrations showed an opposite trend, leading to significant differences in soil C:P and N:P but not in C:N ratios between the two aspects. Soil C and N concentrations were not affected by land use, and soil P concentration was significantly higher in plantation forest than in secondary forest and grassland. Soil C and N concentrations significantly decreased with increasing soil depth, but soil P concentration presented no significant changes with soil depth. Both the land use and soil depth did not differ in terms of their elemental stoichiometry. There were no significant interactive effects of slope aspect, land use and soil depth on soil C, N, and P traits. Our results indicate that soil C, N, and P changes are more sensitive to slope aspect rather than land use and soil depth in the karst trough valley area under ecological restoration.


2006 ◽  
Vol 36 (9) ◽  
pp. 2157-2167 ◽  
Author(s):  
Charles T Garten Jr.

The purpose of this research was to test the hypothesis that vertical enrichment of soil δ13C values is related to rates of soil C turnover in undisturbed, mature forest ecosystems. Soil C and N were measured at nine sites along an altitudinal gradient in the southern Appalachian Mountains (Tennessee and North Carolina, USA). Measurements indicated greater labile and total soil C stocks with increasing altitude. Laboratory incubations (3 days) of rewetted, air-dry soils indicated potential soil C mineralization (µg CO2 produced·g–1 soil C) declined with elevation. A principal component analysis indicated N availability increased with altitude. At each site, there was a significant relationship between δ13C and log-transformed C concentrations in the soil profile (30 cm deep). Enrichment factors (ε) from the Rayleigh equation were also equally useful for describing soil δ13C profiles at each site. Soil C partitioning and turnover times along the gradient were correlated with 13C-enrichment factors. Greater rates of change in δ13C through the soil profile were correlated with faster soil C turnover. Environmental factors, soil C partitioning, and the rate of vertical change in soil 13C abundance are interrelated such that δ13C measurements are a potential indicator of C dynamics in undisturbed forest soils.


2019 ◽  
Vol 28 (10) ◽  
pp. 814 ◽  
Author(s):  
Derek N. Pierson ◽  
Peter R. Robichaud ◽  
Charles C. Rhoades ◽  
Robert E. Brown

Erosion of soil carbon (C) and nitrogen (N) following severe wildfire may have deleterious effects on downstream resources and ecosystem recovery. Although C and N losses in combustion and runoff have been studied extensively, soil C and N transported by post-fire erosion has rarely been quantified in burned landscapes. To better understand the magnitude and temporal pattern of these losses, we analysed the C and N content of sediment collected in severely burned hillslopes and catchments across the western USA over the first 4 post-fire years. We also compared soil C and N losses from areas receiving common erosion-mitigation treatments and untreated, burned areas. The concentrations of C and N in the eroded material (0.23–0.98gCkg−1 and 0.01–0.04gNkg−1) were similar to those of mineral soils rather than organic soil horizons or combusted vegetation. Losses of eroded soil C and N were highly variable across sites, and were highest the first 2 years after fire. Cumulative erosional losses from untreated, burned areas ranged from 73 to 2253kgCha−1 and from 3.3 to 110kgNha−1 over 4 post-fire years. Post-fire erosion-mitigation treatments reduced C and N losses by up to 75% compared with untreated areas. Losses in post-fire erosion are estimated to be <10% of the total soil C and N combusted during severe wildfire and <10% of post-fire soil C and N stocks remaining in the upper 20cm of mineral soil. Although loss of soil C and N in post-fire erosion is unlikely to impair the productivity of recovering vegetation, export of C and N may influence downstream water quality and aquatic ecosystems.


2006 ◽  
Vol 36 (3) ◽  
pp. 565-576 ◽  
Author(s):  
Felipe G Sanchez ◽  
Allan E Tiarks ◽  
J Marty Kranabetter ◽  
Deborah S Page-Dumroese ◽  
Robert F Powers ◽  
...  

This study describes the main treatment effects of organic matter removal and compaction and a split-plot effect of competition control on mineral soil carbon (C) and nitrogen (N) pools. Treatment effects on soil C and N pools are discussed for 19 sites across five locations (British Columbia, Northern Rocky Mountains, Pacific Southwest, and Atlantic and Gulf coasts) that are part of the Long-Term Soil Productivity (LTSP) network and were established over 5 years ago. The sites cover a broad range of soil types, climatic conditions, and tree species. Most sites showed increased soil C and N levels 5 years after study establishment; however, the rate and magnitude of the changes varied between sites. Organic matter removal, compaction, or competition control did not significantly affect soil C and N contents at any site, except for the Northern Rocky Mountain site, where competition control significantly affected soil C and N contents. The observation that, after 5 years, the soil C and N contents were not negatively affected by even the extreme treatments demonstrates the high resiliency of the soil, at least in the short term, to forest management perturbations.


1997 ◽  
Vol 77 (2) ◽  
pp. 205-210 ◽  
Author(s):  
M. R. Carter ◽  
D. A. Angers ◽  
E. G. Gregorich ◽  
M. A. Bolinder

Current interest in carbon (C) exchange processes between terrestrial ecosystems and the atmosphere have identified a need to assess soil C stocks or inventories for specific soil types and climates. In this study, the mean store of C and nitrogen (N) was determined in the soil profile of several Gleysolic, Podzolic, Luvisolic, and Brunisolic soils under different agricultural management systems, in the cool, humid region of eastern Canada. Based on a total of 69 management treatments from 16 agroecosystem sites, mean soil C and N densities (to a soil depth of 60 cm) ranged from 3.1 to 13.1 kg C m−2 and from 0.36 to 1.05 kg N m−2 The C:N ratio ranged from 8.3 to 17.1. Distribution of C and N down the soil profile showed a relatively regular pattern of C and N decrease with depth. Estimated C stocks or storage for the 1-m soil depth ranged from 8.3 to 13.3 kg C m−2 for the Gleysolic soils, and 5.4 to 10.5 kg C m−2 for the Podzolic soils, with an overall range and mean for all soils of 3 to 16 kg C m−2 and 9.8 kg C m−2 ± 2.8 This indicates that some agricultural soils in eastern Canada possess a relatively high potential for organic matter storage. Key words: Organic carbon and nitrogen storage, agroecosystem, Gleysol, Podzol, Luvisol, Brunisol, cool-humid climate


Sign in / Sign up

Export Citation Format

Share Document