Evaluation of the CD107 cytotoxicity assay for the detection of cytolytic CD8+ cells recognizing HER2/neu vaccine peptides

2005 ◽  
Vol 92 (1) ◽  
pp. 85-93 ◽  
Author(s):  
Elizabeth A. Mittendorf ◽  
Catherine E. Storrer ◽  
Craig D. Shriver ◽  
Sathibalan Ponniah ◽  
George E. Peoples
Keyword(s):  
2004 ◽  
Vol 121 (2) ◽  
pp. 327 ◽  
Author(s):  
E. Mittendorf ◽  
M. Hueman ◽  
C. Storrer ◽  
C. Shriver ◽  
S. Ponnaiah ◽  
...  
Keyword(s):  

2020 ◽  
Vol 20 (9) ◽  
pp. 1094-1104 ◽  
Author(s):  
Omid Arjmand ◽  
Mehdi Ardjmand ◽  
Ali M. Amani ◽  
Mohmmad H. Eikani

Background: Doxorubicin, as a strong anti-cancer agent for clinical treatment of various cancer types along with other drugs, is widely utilized. Due to the physiology of the human body and cancerous tissues, the applicability of doxorubicin is still limited and the targeted treatment of the different types of cancers is considered. Also, the side effects of the conventional forms of chemotherapy medicines, damaging and stressing the normal cells are considerable. Objective: This study introduces a novel and effective system for the targeted release of doxorubicin by successfully fabricating the green magnetic graphene oxide, chitosan, allium sativum, and quercus nanocomposite. Methods: The in vitro release of doxorubicin loaded on the nanocomposite was evaluated and investigated at pH 7.4 and 6.5, respectively. The drug diffusivity in the plasma environment was assessed for a more accurate analysis of the drug diffusion process. The nanocomposite loaded drug release mechanism and kinetics, as well as cytotoxicity assay was investigated. Results: The efficiency of the drug encapsulation was significantly enhanced using natural extract ingredients and consequently, the efficacy of the targeted treatment of cancerous tissues was improved. The developed nanocomposite provided a controlled release of doxorubicin in similar acidic conditions of the normal and cancerous cells and affirming that the fabricated system is thoroughly pH-dependent. Conclusion: The cytotoxicity assay confirmed that the fabricated nanocomposite at a high growth rate of cancerous cells has an anticancer property and acts as a toxic agent against tumor cells, suggesting that in conjunction with doxorubicin, it can be highly improved for killing cancerous cells.


2020 ◽  
Author(s):  
Sandeep Waghulde ◽  
Tushar Baviskar ◽  
Praful Patil ◽  
Shweta Singh ◽  
Nilesh Gorde ◽  
...  

Thorax ◽  
2001 ◽  
Vol 56 (6) ◽  
pp. 450-455
Author(s):  
E Mund ◽  
B Christensson ◽  
K Larsson ◽  
R Grönneberg

BACKGROUNDAge related changes in the immune system have been studied frequently but a possible relation to sex has not, to our knowledge, previously been examined. The effect of age and sex on the composition of lymphocyte subsets in bronchoalveolar lavage (BAL) fluid and peripheral blood was therefore examined.METHODSBronchoscopy with lavage was performed in 32 healthy non-atopic, non-smoking volunteers (16 women aged 26–63 years (mean 44) and 16 men aged 23–63 years (mean 39)). Cytospin preparations for differential counts of BAL fluid cells and surface antigen expression of lymphocytes from BAL fluid and blood were analysed by flow cytometry.RESULTSMost parameters in the BAL fluid changed with age in women. The percentage of CD4+ lymphocytes increased with age from a mean of 48 (SD10)% in women aged ⩽40 years to 69 (11)% in women aged >43 years (p=0.001). The percentage of CD8+ lymphocytes tended to decrease with age and the CD4/CD8 ratio was 5.8 (1.2) in women aged >43 years compared with 2.1 (0.7) in those aged ⩽40 years (p<0.0001). Women aged >43 years differed from men aged >43 years as well as from younger subjects of both sexes with respect to CD4+ cells and CD4/CD8 ratio, and from younger women with respect to CD8+ cells. There was no age related change in the CD4/CD8 ratio in blood. No sex related differences were seen in the blood or BAL fluid of adults below the age of 40 years.CONCLUSIONSThe composition of lymphocytes with different phenotypes in the lower respiratory tract changes with age in women but not in men. This may have implications for some clinical conditions such as chronic dry cough which are observed predominantly in women.


2021 ◽  
Vol 32 ◽  
pp. S58
Author(s):  
T. Monier ◽  
A. Samir ◽  
A.A. El Khodiry ◽  
R. Abdel Tawab ◽  
H.M. El Tayebi

Author(s):  
K Yang ◽  
K Reddy ◽  
BH Wang ◽  
A Cenic ◽  
LC Ang ◽  
...  

Calcifying pseudoneoplasm of the neuraxis (CAPNON) is a rare tumefactive lesion with unclear pathogenesis. It is diagnosed by pathological findings of the typical histological features that include granular amorphous cores with palisading spindle to epithelioid cells, variable fibrous stroma, foreign-body reaction with giant cells, and calcification/ossification occasionally with psammoma bodies. However, its histopathology may be variable and currently immunohistochemistry plays a limited role in its diagnosis and understanding the pathogenesis. In this study, we examined 6 cases of CAPNONs including 3 intracranial and 3 spinal epidural lesions (age range: 59–69 years; 3 males and 3 females). Immunohistochemistry revealed that all CAPNON cores contain abundant positive deposits of neurofilament protein (NFP), which was supported by electron microscopy finding of filaments (8–13 nm in diameter). In comparison, no NFP positivity was found in 5 psammomatous/metaplastic meningiomas or 7 intervertebral tissue lesions with calcification/ossification. In addition, CAPNON cellular areas showed variable numbers of CD8+ cytotoxic T-cells with less CD4+ T-cells and a decreased ratio of CD4/CD8+ cells, versus the intervertebral tissue lesions without CD8+ or CD4+ cells. Our findings suggest that NFP may be a principal constituent of CAPNONs, and thus involved in the pathogenesis of CAPNON. Given the decreased CD4/CD8 ratio, the pathogenic process of CAPNON is possibly immune- mediated.LEARNING OBJECTIVESThe presentation will enable the learner to: 1.Discuss histopathological features of calcifying pseudoneoplasm of the neuraxis (CAPNON) with variation of non-core components.2.Explore diagnostic and pathogenic roles of immunohistochemical markers including neurofilament protein and CD4/CD8 in CAPNON.


2020 ◽  
Vol 22 (Supplement_2) ◽  
pp. ii89-ii89
Author(s):  
Subhajit Ghosh ◽  
Ran Yan ◽  
Sukrutha Thotala ◽  
Arijita Jash ◽  
Anita Mahadevan ◽  
...  

Abstract BACKGROUND Patients with glioblastoma (GBM) are treated with radiation (RT) and temozolomide (TMZ). These treatments can cause prolonged severe lymphopenia, which is associated with shorter survival. NT-I7 (efineptakin alfa) is a long-acting recombinant human IL-7 that supports the proliferation and survival CD4+ and CD8+ cells in both human and mice. We tested whether NT-I7 would protect T cells from treatment-induced lymphopenia and improve survival. METHODS C57BL/6 mice bearing intracranial tumors (GL261 or CT2A) were treated with RT (1.8 Gy/day x 5 days), TMZ (33 mg/kg/day x 5 days) and/or NT-17 (10 mg/kg on the final day of RT completion). We followed for survival and profiled CD3, CD8, CD4, FOXP3 in peripheral blood over time. In parallel, we assessed cervical lymph nodes, bone marrow, thymus, spleen, and the tumor 6 days after NT-I7 treatment. RESULTS Median survival in mice treated with NT-I7 combined with RT was significantly better than RT alone (GL261: 40d vs 34d, p&lt; 0.0021; CT2A: 90d vs 40d, p&lt; 0.0499) or NT-I7 alone (GL261: 40d vs 24d, p&lt; 0.008; CT2A: 90d vs 32d, p&lt; 0.0154). NT-17 with RT was just as effective as NT-I7 combined with RT and TMZ in both GL261 (40d vs 47d) and CT2A (90d vs 90d). NT-I7 treatment significantly increased the amount of CD8+ cells in the peripheral blood and tumor. NT- I7 rescued CD8+ T cells from RT induced lymphopenia in peripheral blood, spleen, and lymph nodes. NT-I7 alone or NT-I7 in combination with RT increased the CD8+ T cells in peripheral blood and tumor while reducing the FOXP3+ T-reg cells in the tumor microenvironment. CONCLUSIONS NT-I7 protects T-cells from RT induced lymphopenia, improves cytotoxic CD8+ T lymphocytes systemically and in the tumor, and improves survival. Presently, a phase I/II trial to evaluate NT-I7 in patients with high-grade gliomas is ongoing (NCT03687957).


Virology ◽  
2010 ◽  
Vol 407 (2) ◽  
pp. 341-351 ◽  
Author(s):  
Linda Zane ◽  
David Sibon ◽  
Catherine Legras ◽  
Joël Lachuer ◽  
Anne Wierinckx ◽  
...  
Keyword(s):  

2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A599-A599
Author(s):  
Subhajit Ghosh ◽  
Ran Yan ◽  
Sukrutha Thotala ◽  
Arijita Jash ◽  
Anita Mahadevan ◽  
...  

BackgroundRadiation (RT) and temozolomide (TMZ), which are standard of care for patients with glioblastoma (GBM), can cause prolonged severe lymphopenia. Lymphopenia, in turn, is an independent risk factor for shorter survival. Interleukin-7 (IL-7) is a cytokine that is required for T cell homeostasis and proliferation. IL-7 levels are inappropriately low in GBM patients with lymphopenia. NT-I7 (efineptakin alfa) is a long-acting recombinant human IL-7 that supports the proliferation and survival CD4+ and CD8+ cells in both human and mice. We tested whether NT-I7 rescues treatment-induced lymphopenia and improves survival.MethodsImmunocompetent C57BL/6 mice bearing two intracranial glioma models (GL261 and CT2A) were treated with RT (1.8 Gy/day x 5 days), TMZ (33 mg/kg/day x 5 days) and/or NT-I7 (10 mg/kg on the final day of RT completion). We profiled the CD3, CD8, CD4, FOXP3 cells in peripheral blood over time. We also immunoprofiled cervical lymph nodes, bone marrow, thymus, spleen, and the tumor 6 days after NT-I7 treatment. Survival was monitored daily.ResultsMedian survival in mice treated with NT-I7 combined with RT was significantly longer than RT alone (GL261: 40d vs 34d, p<0.0021; CT2A: 90d vs 40d, p<0.0499) or NT-I7 alone (GL261: 40d vs 24d, p<0.008; CT2A: 90d vs 32d, p<0.0154). NT-I7 with RT was just as effective as NT-I7 combined with RT and TMZ in both GL261(40d vs 47d) and CT2A (90d vs 90d). Cytotoxic CD8+ T cells were increased in both peripheral blood (0.66 x 105 to 3.34 x 105; P≤0.0001) and tumor (0.53 x 103 to 1.83 x 103; P≤0.0001) in mice treated with NT-I7 when compared to control. Similarly, NT-I7 in combination with RT increased the CD8+ T cells in peripheral blood (0.658 x 105 to 1.839 x 105 P≤0.0001) when compared to RT alone. There were decreases in tumor infiltrating FOXP3+ T-reg cells in mice treated with NT-I7 (1.9 x 104 to 0.75 x 104 P≤0.0001) and NT-I7 + RT (1.9 x 104 to 0.59 x 104 P≤0.0001) when compared to the control group without NT-I7. In addition, NT- I7 treatment increased CD8+ T cells in thymus, spleen, and lymph nodes.ConclusionsNT-I7 enhances cytotoxic CD8+ T lymphocytes systemically and in the tumor microenvironment, and improves survival. A phase I/II trial to evaluate NT-I7 in patients with high-grade gliomas is ongoing (NCT03687957).


2019 ◽  
Vol 55 (5) ◽  
pp. 974-978
Author(s):  
Andrzej Lange ◽  
Iwona Wodzińska-Maszko ◽  
Helena Pakos ◽  
Anna Sobczyńska-Konefał ◽  
Janusz Lange ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document