Effects of physical and chemical structures of bacterial cellulose on its enhancement to paper physical properties

Cellulose ◽  
2017 ◽  
Vol 24 (8) ◽  
pp. 3513-3523 ◽  
Author(s):  
Zhouyang Xiang ◽  
Qingguo Liu ◽  
Yong Chen ◽  
Fachuang Lu
Agronomy ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1476
Author(s):  
Ana Cristina Ferrão ◽  
Raquel P. F. Guiné ◽  
Elsa Ramalhosa ◽  
Arminda Lopes ◽  
Cláudia Rodrigues ◽  
...  

Hazelnuts are one of the most appreciated nuts worldwide due to their unique organoleptic and nutritional characteristics. The present work intended to analyse several physical and chemical properties of different hazelnut varieties grown in Portugal, namely Tonda de Giffoni, Grada de Viseu, Segorbe, Longa de Espanha, Butler, Gunslebert, and Negreta. In general, the results revealed statistically significant differences between the varieties under study. The Gunslebert had more elongated hazelnuts and with heavier shelled fruits, while the kernels of the Grada de Viseu revealed to be heavier. Grada de Viseu was harder in the shell, Gunslebert had a harder core, and Segorbe was more resistant to fracture. Fat was the more representative component for all varieties and in some cases the values of moisture and water activity were over the recommended amount (≥0.62). Tonda de Giffoni was the variety with the highest induction time, indicating the highest oxidation stability. Moreover, discriminant analysis revealed that the variables more important to distinguish the varieties were protein (λ = 0.007) and water activity (λ = 0.010). The results of this study help to better understand the differences between some hazelnut varieties that are cultivated in Portugal, which gives important hints for all players in the hazelnut sector.


2021 ◽  
pp. 1-10
Author(s):  
Anshu Siwach ◽  
Siddhartha Kaushal ◽  
Ratul Baishya

Abstract Mosses are one of the most important and dominant plant communities, especially in the temperate biome, and play a significant role in ecosystem function and dynamics. They influence the water, energy and element cycle due to their unique ecology and physiology. The present study was undertaken in three different temperate forest sites in the Garhwal Himalayas, viz., Triyuginarayan (Kedarnath Wildlife Sanctuary (KWLS)), Chakrata, and Kanasar forest range. The study was focused on understanding the influence of mosses on soil physical properties and nutrient availability. Different physico-chemical properties were analysed under two different substrata, that is, with and without moss cover in two different seasons, viz., monsoon and winter. We observed mosses to influence and alter the physical properties and nutrient status of soil in both seasons. All soil physical and chemical properties, except magnesium, showed significant difference within the substrates, among all the sites and across the two seasons. Besides the soil characteristics underneath the moss vegetation, the study also highlights the diversity of mosses found in the area. Mosses appear to create high nutrient microsites via a high rate of organic matter accumulation and retain nutrients for longer periods thus, maintaining ecosystem stability.


Polymers ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 2998
Author(s):  
Mohammed Nadeem Bijle ◽  
Manikandan Ekambaram ◽  
Edward Lo ◽  
Cynthia Yiu

The in vitro study objectives were to investigate the effect of arginine (Arg) incorporation in a 5% sodium fluoride (NaF) varnish on its physical and chemical properties including F/Arg release. Six experimental formulations were prepared with L-arginine (L-Arg) and L-arginine monohydrochloride at 2%, 4%, and 8% w/v in a 5% NaF varnish, which served as a control. The varnishes were subjected to assessments for adhesion, viscosity, and NaF extraction. Molecular dynamics were simulated to identify post-dynamics total energy for NaF=Arg/Arg>NaF/Arg<NaF concentrations. The Arg/F varnish release profiles were determined in polyacrylic lactate buffer (pH-4.5; 7 days) and artificial saliva (pH-7; 1 h, 24 h, and 12 weeks). Incorporation of L-Arg in NaF varnish significantly influences physical properties ameliorating retention (p < 0.001). L-Arg in NaF varnish institutes the Arg-F complex. Molecular dynamics suggests that NaF>Arg concentration denotes the stabilized environment compared to NaF<Arg (p < 0.001). The 2% Arg-NaF exhibits periodic perennial Arg/F release and shows significantly higher integrated mean F release than NaF (p < 0.001). Incorporating 2% L-arginine in 5% NaF varnish improves its physical properties and renders a stable matrix with enduring higher F/Arg release than control.


2016 ◽  
Vol 51 (21) ◽  
pp. 9562-9572 ◽  
Author(s):  
V. L. D. Costa ◽  
A. P. Costa ◽  
M. E. Amaral ◽  
C. Oliveira ◽  
M. Gama ◽  
...  

2021 ◽  
Vol 410 ◽  
pp. 469-474
Author(s):  
Ivan S. Safronov ◽  
Alexander I. Ushakov

One of the most important purposes of materials science is the ability to govern the physical properties of materials characterized by different structures. The strength properties of nanostructured metal alloys do not always meet the exploitation requirements. The set of properties of such materials is stable within narrow limits: temperature, mechanical, and corrosion conditions. Traditional processing modes are ineffective for such materials. Attempts to use them often lead to the loss of unique physical and chemical properties. The most effective methods of processing such materials are associated with the use of laser radiation. The laser pulse has a number of features, including a complex effect on the surface layers of the material. Spot and short irradiation with high-energy rays can preserve the unique physical properties of samples as a whole and improve strength indicators without destroying the structure of the material as a whole.


2017 ◽  
Vol 29 (3) ◽  
pp. 394-416 ◽  
Author(s):  
Burcu Sancar Besen ◽  
Onur Balci

Purpose The purpose of this paper is to investigate the effects of silicone-based softeners, which were developed with different particle sizes (nano, micro, and macro) and chemical structures, on the performance of 100 percent cotton fabrics knitted with different type of yarn (ring, open-end, and compact). Design/methodology/approach In the study, the silicone emulsions having expected particle sizes were produced at laboratory conditions. The produced silicone emulsions were applied to knitted fabrics with both padding and exhaust methods at different concentrations. Some characterization tests (particle size and zeta potential) were applied to the silicone emulsions before the applications. After the applications, CIELab values, whiteness and color fastness, hyrophility, abrasion, pilling, bursting strength, and stiffness performances of the samples were tested. The changes of the investigated properties were also examined via ANOVA. Findings According to the results, it was found that the silicone applications caused the CIELab values, whiteness degree, hyrophility, pilling, bursting strength and stiffness performance of the fabrics to change depending on the particle sizes of the emulsions, the yarn type of the fabrics, the application type, and the concentration of the silicone emulsions. When the ANOVA results were examined, it was seen that the types of the yarn and the silicone emulsions were the most effective working parameters on the results. Research limitations/implications Because no additives were added to the produced silicone emulsions, in the future research, they can be developed with the use of some additives. Thus, it can resolve some of the disadvantages of the silicone emulsions on the textiles. Practical implications While applying the silicone softeners to the knitted fabrics, the type of the yarn and the particle sizes of the emulsions must be determined according to each other, in order to obtain enough handle performance without causing negative change on the other important properties of the knitted fabrics. Originality/value When the studies regarding silicone softeners were investigated, it was found that there were no studies about the effect of the silicone softeners having different particle sizes on the physical and chemical structures of the knitted fabrics depending on the type of yarn and some working parameters such as concentration and type of the application.


2021 ◽  
Vol 1019 ◽  
pp. 174-178
Author(s):  
Ramesh Kumar ◽  
Priti Kumari ◽  
Kumar Saurav ◽  
Purushottam Poddar ◽  
Vijay Kumar Verma

The relative metallic character of noble metals, Cu, Ag & Au has been suggested by their physical and chemical properties. Their position in the metallic series is in the neighborhood of that of Li, Mg and Zn. These Metals are inferior of Li, Mg, Zn, Fe, Co and Ni in metallic character. Li, Mg, Zn, Fe, Co and Ni are inferior to Na, K, Rb, Cs, Ca, Ba and Sr. The noble metals have simple metallic character in physical properties at normal temperatures.


2020 ◽  
Vol 12 (18) ◽  
pp. 7255 ◽  
Author(s):  
Shamina Imran Pathan ◽  
Paola Arfaioli ◽  
Tommaso Bardelli ◽  
Maria Teresa Ceccherini ◽  
Paolo Nannipieri ◽  
...  

The fate, properties and determination of microplastics (MPs) and nanoplastics (NPs) in soil are poorly known. In fact, most of the 300 million tons of plastics produced each year ends up in the environment and the soil acts as a log-term sink for these plastic debris. Therefore, the aim of this review is to discuss MP and NP pollution in soil as well as highlighting the knowledge gaps that are mainly related to the complexity of the soil ecosystem. The fate of MPs and NPs in soil is strongly determined by physical properties of plastics, whereas negligible effect is exerted by their chemical structures. The degradative processes of plastic, termed ageing, besides generating micro-and nano-size debris, can induce marked changes in their chemical and physical properties with relevant effects on their reactivity. Further, these processes could cause the release of toxic oligomeric and monomeric constituents from plastics, as well as toxic additives, which may enter in the food chain, representing a possible hazard to human health and potentially affecting the fauna and flora in the environment. In relation to their persistence in soil, the list of soil-inhabiting, plastic-eating bacteria, fungi and insect is increasing daily. One of the main ecological functions attributable to MPs is related to their function as vectors for microorganisms through the soil. However, the main ecological effect of NPs (limited to the fraction size < than 50 nm) is their capacity to pass through the membrane of both prokaryotic and eukaryotic cells. Soil biota, particularly earthworms and collembola, can be both MPs and NPs carriers through soil profile. The use of molecular techniques, especially omics approaches, can gain insights into the effects of MPs and NPs on composition and activity of microbial communities inhabiting the soil and into those living on MPs surface and in the gut of the soil plastic-ingesting fauna.


Cellulose ◽  
2019 ◽  
Vol 26 (10) ◽  
pp. 5893-5912 ◽  
Author(s):  
Paulina Kosmela ◽  
Kamila Gosz ◽  
Paweł Kazimierski ◽  
Aleksander Hejna ◽  
Józef Tadeusz Haponiuk ◽  
...  

2016 ◽  
Vol 54 ◽  
pp. 245-254 ◽  
Author(s):  
Paraskevi Paximada ◽  
Apostolos A. Koutinas ◽  
Elke Scholten ◽  
Ioanna G. Mandala

Sign in / Sign up

Export Citation Format

Share Document