Characterization of cell wall modification through thermogravimetric analysis during ripening of Chilean strawberry (Fragaria chiloensis) fruit

Cellulose ◽  
2021 ◽  
Author(s):  
Ricardo I. Castro ◽  
Marcelo Muñoz-Vera ◽  
Carolina Parra-Palma ◽  
Felipe Valenzuela-Riffo ◽  
Carlos R. Figueroa ◽  
...  
2020 ◽  
Vol 70 (12) ◽  
pp. 4594-4600

The purpose of this study was to characterize some types of biomass wastes resulted from different activities such as: agriculture, forestry and food industry using thermogravimetric and ICP-MS analyses. Also, it was optimized an ICP-MS method for the determination of As, Cd and Pb from biomass ash samples. The ICP-MS analysis revealed that the highest concentration of metals (As, Cd, Pb) was recorded in the wood waste ash sample, also the thermogravimetric analysis indicated that the highest amount of ash was obtained for the same sample (26.82%). The biomass wastes mentioned in this study are alternative recyclable materials, reusable as pellets and briquettes. Keywords: ash, biomass, ICP-MS, minor elements, TG


2021 ◽  
Author(s):  
Jordan Delisle ◽  
Baptiste Cordier ◽  
Stéphane Audebert ◽  
Matthieu Pophillat ◽  
Caroline Cluzel ◽  
...  
Keyword(s):  

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Guiming Deng ◽  
Fangcheng Bi ◽  
Jing Liu ◽  
Weidi He ◽  
Chunyu Li ◽  
...  

AbstractBackgroundBanana plant height is an important trait for horticultural practices and semi-dwarf cultivars show better resistance to damages by wind and rain. However, the molecular mechanisms controlling the pseudostem height remain poorly understood. Herein, we studied the molecular changes in the pseudostem of a semi-dwarf banana mutant Aifen No. 1 (Musaspp. Pisang Awak sub-group ABB) as compared to its wild-type dwarf cultivar using a combined transcriptome and metabolome approach.ResultsA total of 127 differentially expressed genes and 48 differentially accumulated metabolites were detected between the mutant and its wild type. Metabolites belonging to amino acid and its derivatives, flavonoids, lignans, coumarins, organic acids, and phenolic acids were up-regulated in the mutant. The transcriptome analysis showed the differential regulation of genes related to the gibberellin pathway, auxin transport, cell elongation, and cell wall modification. Based on the regulation of gibberellin and associated pathway-related genes, we discussed the involvement of gibberellins in pseudostem elongation in the mutant banana. Genes and metabolites associated with cell wall were explored and their involvement in cell extension is discussed.ConclusionsThe results suggest that gibberellins and associated pathways are possibly developing the observed semi-dwarf pseudostem phenotype together with cell elongation and cell wall modification. The findings increase the understanding of the mechanisms underlying banana stem height and provide new clues for further dissection of specific gene functions.


Molecules ◽  
2021 ◽  
Vol 26 (3) ◽  
pp. 709
Author(s):  
Helge Berland ◽  
Øyvind M. Andersen

Anthocyanins with various functions in nature are one of the most important sources of colours in plants. They are based on anthocyanidins or 3-deoxyanthocyanidins having in common a C15-skeleton and are unique in terms of how each anthocyanidin is involved in a network of equilibria between different forms exhibiting their own properties including colour. Sphagnorubin C (1) isolated from the cell wall of peat moss (Sphagnum sp.) was in fairly acidic and neutral dimethyl sulfoxide characterized by nuclear magnetic resonance (NMR) and ultraviolet–visible (UV–vis) absorption techniques. At equilibrium, the network of 1 behaved as a two–component colour system involving the reddish flavylium cationic and the yellow trans–chalcone forms. The additional D- and E-rings connected to the common C15-skeleton extend the π-conjugation within the molecule and provide both bathochromic shifts in the absorption spectra of the various forms as well as a low isomerization barrier between the cis- and trans-chalcone forms. The hemiketal and cis-chalcone forms were thus not observed experimentally by NMR due to their short lives. The stable, reversible network of 1 with good colour contrast between its two components has previously not been reported for other natural anthocyanins and might thus have potential in future photochromic systems. This is the first full structural characterization of any naturally occurring anthocyanin chalcone form.


Sign in / Sign up

Export Citation Format

Share Document