Environmentally-benign, water-based covalent polymer network for flame retardant cotton

Cellulose ◽  
2021 ◽  
Author(s):  
Bin Zhao ◽  
Thomas J. Kolibaba ◽  
Simone Lazar ◽  
Jaime C. Grunlan
2021 ◽  
Author(s):  
Kaihao Wang ◽  
Shuheng Wang ◽  
Dan Meng ◽  
Dong Chen ◽  
Chenzhong Mu ◽  
...  

Abstract For the sake of direct using on the built wooden buildings, a green flame resistance coating comprising sodium polysilicate (SPS) and boric acid was prepared. With weight gain of only 10 wt.%, the treated wood sample (SPS/B-wood) performed improved limiting oxygen index value of 40.3% and passed the V-0 rating in UL-94 test. Additionally, the total heat release, total smoke production and peak carbon monoxide production of SPS/B-wood sample were decreased by 24.5%, 36.0% and 59.4% respectively, compared with that of control wood sample. The residue of SPS/B-wood sample was increased to 54.0% from 18.4% of control wood sample at 800oC in the thermogravimetry analysis. The flame retardant mechanism was suggested that SPS and boric acid formed Si-O-B and Si-O-Si contained structures, isolating the heat and smoke transfer during wood combustion. Notably, NaOH, introduced by the SPS/B coating, catalyzed the lignin to form compact and high-quality char. To conclude, this low-cost and easily-operated coating has a promising future utilizing in the villages with dense wood buildings.


2020 ◽  
Author(s):  
Chanchal Kumar Kundu ◽  
Zhiwei Li ◽  
Lei Song ◽  
Yuan Hu

Among the synthetic polymeric textiles, Nylon (Polyamide) textiles (Nylon66/Nylon 6) are one of the most widely used materials, especially as apparel and industrial uses for their excellent properties, namely higher strength and good wear resistance. Unfortunately, due to their organic structures, they show the relative ease of burning, which poses a great risk to fire. For the flame retardant (FR) treatment of nylon textiles, several strategies have been developed throughout the years and the earlier studies show the enormous uses of petroleum-based flame retardant compounds via energy intensive application methods. However, the rapid improvement in living standards as well as the recent call for a reduction of environmental impacts during manufacturing and use have been pushed researchers to come up with environmentally benign chemistries and processes. Therefore, the challenges in search of the most sustainable, efficient and durable flame retardant treatments for nylon textiles still remain as a hot topic to be addressed. This chapter discusses the eco-friendly approaches that have been taken in escalating the fire performance of these novel nylon textiles, especially focusing on the applied compounds and the application techniques along with the durability issues of such applications.


2020 ◽  
Vol 38 (6) ◽  
pp. 485-503
Author(s):  
Benjamin Tawiah ◽  
Bin Yu ◽  
Anthony Chun Yin Yuen ◽  
Bin Fei

The demand for environmentally benign flame retardants for biodegradable polymers has become particularly necessary due to their inherently “green” nature. This work reports intrinsically non-toxic polydopamine (PDA) particles as an efficient and environmentally friendly flame retardant for polylactic acid (PLA). 5 wt% PDA loading resulted in a 22% reduction in the peak heat release rate, 34.7% increase in the fire performance index, and lower CO2 production compared to neat PLA. A limiting oxygen index (LOI) value of 27.5% and a V-2 rating was achieved in the UL-94 vertical burning test. Highly aggregated amorphous particulate char was formed with the increasing content of PDA, and a significant reduction in evolved pyrolysis gaseous products was achieved for the PLA/PDA composites as compared with control PLA. This work provides important insight into the potential commercial application of PDA alone as an efficiently green, environmentally benign flame retardant for bioplastic PLA.


Polymers ◽  
2016 ◽  
Vol 8 (10) ◽  
pp. 357 ◽  
Author(s):  
Jenny Alongi ◽  
Federico Carosio ◽  
Paul Kiekens

2016 ◽  
Vol 45 (2) ◽  
pp. 618-629 ◽  
Author(s):  
Damiano Cattaneo ◽  
Stewart J. Warrender ◽  
Morven J. Duncan ◽  
Richard Castledine ◽  
Nigel Parkinson ◽  
...  

CPO-27 MOFs suitable for nitric oxide delivery applications are synthesised at 20 L and 100 L scale under environmentally benign conditions.


Fibers ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 69
Author(s):  
Eva Magovac ◽  
Bojana Vončina ◽  
Ana Budimir ◽  
Igor Jordanov ◽  
Jaime C. Grunlan ◽  
...  

Environmentally benign layer-by-layer (LbL) deposition was used to obtain flame-retardant and antimicrobial cotton. Cotton was coated with 8, 10, and 12 phytic acid (PA) and chitosan (CH)-urea bilayers (BL) and then immersed into copper (II) sulfate (CuSO4) solution. Our findings were that 12 BL of PA/CH-urea + Cu2+ were able to stop flame on cotton during vertical flammability testing (VFT) with a limiting oxygen index (LOI) value of 26%. Microscale combustion calorimeter (MCC) data showed a reduction of peak heat release rates (pHRR) of more than 61%, while the reduction of total heat release (THR) was more than 54%, relative to untreated cotton. TG-IR analysis of 12 BL-treated cotton showed the release of water, methane, carbon dioxide, carbon monoxide, and aldehydes, while by adding Cu2+ ions, the treated cotton produces a lower amount of methane. Treated cotton also showed no levoglucosan. The intumescent behavior of the treatment was indicated by the bubbled structure of the post-burn char. Antibacterial testing showed a 100% reduction of Klebsiella pneumoniae and Staphylococcus aureus. In this study, cotton was successfully functionalized with a multifunctional ecologically benign flame-retardant and antibacterial nanocoating, by means of LbL deposition.


Polymers ◽  
2021 ◽  
Vol 13 (16) ◽  
pp. 2662
Author(s):  
Sangram P. Bhoite ◽  
Jonghyuck Kim ◽  
Wan Jo ◽  
Pravin H. Bhoite ◽  
Sawanta S. Mali ◽  
...  

The compatibility and coating ratio between flame retardant materials and expanded polystyrene (EPS) foam is a major impediment to achieving satisfactory flame retardant performance. In this study, we prepared a water-based intumescent flame retardant system and methylene diphenyl diisocyanate (MDI)-coated expandable polystyrene microspheres by a simple coating approach. We investigated the compatibility, coating ratio, and fire performance of EPS- and MDI-coated EPS foam using a water-based intumescent flame retardant system. The microscopic study revealed that the water-based intumescent flame retardant materials were successfully incorporated with and without MDI-coated EPS microspheres. The cone calorimeter tests (CCTs) of the MDI-coated EPS containing water-based intumescent flame retardant materials exhibited better flame retardant performance with a lower total heat release (THR) 7.3 MJ/m2, peak heat release rate (PHRR) 57.6 kW/m2, fire growth rate (FIGRA) 2027.067 W/m2.s, and total smoke production (TSP) 0.133 m2. Our results demonstrated that the MDI-coated EPS containing water-based intumescent flame retardant materials achieved flame retarding properties as per fire safety standards.


Author(s):  
Sesik Kang ◽  
Minsu Ju ◽  
Junghoon Kim

Conventional decontamination methods utilize water-based systems, which generate high amounts of secondary wastes. Herein, the authors describe an environmentally benign decontamination method using liquid and supercritical CO2. The use of CO2 as a solvent affords effective waste reduction by its ability to be recycled, thereby leaving behind only the contaminants upon its evaporation. In this study, a CO2 solution process was assessed using t-butyl salen (t-salen), dicyclohexano-18Crown6 (DC18C6), 8-hydroxyquinoline (8-HQN), perfluoro-1-octanesulfonic acid tetra-ethylammonium salt (NEt4PFOSA), and pentadecafluorooctanoic acid ammonium salt (NEt4PFOA) to extract spiked radioactive contaminants (Nb, Zr, Co, Sr) from an inert sample matrix, namely with filter paper. With the static extraction method, Sr was extracted with a maximum extraction rate of 97%, and Nb was extracted with a maximum extraction rate of 75%. Additionally, the authors were also able to extract Co and Zr with maximum extraction rates of 73% and 64%, respectively.


2016 ◽  
Vol 99 ◽  
pp. 32-46 ◽  
Author(s):  
S. Hamdani-Devarennes ◽  
R. El Hage ◽  
L. Dumazert ◽  
R. Sonnier ◽  
L. Ferry ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document