scholarly journals Multiphase-field modelling of crack propagation in geological materials and porous media with Drucker-Prager plasticity

Author(s):  
Michael Späth ◽  
Christoph Herrmann ◽  
Nishant Prajapati ◽  
Daniel Schneider ◽  
Felix Schwab ◽  
...  

Abstract A multiphase-field approach for elasto-plastic and anisotropic brittle crack propagation in geological systems consisting of different regions of brittle and ductile materials is presented and employed to computationally study crack propagation. Plastic deformation in elasto-plastic materials such as frictional, granular or porous materials is modelled with the pressure-sensitive Drucker-Prager plasticity model. This plasticity model is combined with a multiphase-field model fulfilling the mechanical jump conditions in diffuse solid-solid interfaces. The validity of the plasticity model with phase-inherent stress and strain fields is shown, in comparison with sharp interface finite element solutions. The proposed model is capable of simulating crack formation in heterogeneous multiphase systems comprising both purely elastic and inelastic phases. We investigate the influence of different material parameters on the crack propagation with tensile tests in single- and two-phase materials. To show the applicability of the model, crack propagation in a multiphase domain with brittle and elasto-plastic components is performed.

Materials ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 851
Author(s):  
Heng Ma ◽  
Huiyun Tian ◽  
Juncheng Xin ◽  
Zhongyu Cui

Electrochemical H charging, hydrogen permeation, and hydrogen-induced cracking (HIC) behavior of 690 MPa grade steel substrate and different heat-treatment states (annealed, quenched, normalized, tempered) are investigated by cyclic voltammetry (CV), hydrogen permeation, electrochemical H charging, and slow strain rate tensile test (SSRT). The results show that hydrogen diffuses through the steel with the highest rate in base metal and the lowest rate in annealed steel. The hydrogen-induced cracks in base metal show obvious step shape with tiny cracks near the main crack. The cracks of annealed steel are mainly distributed along pearlite. The crack propagation of quenched steel is mainly transgranular, while the hydrogen-induced crack propagation of tempered steel is along the prior austenite grain boundary. HIC sensitivity of base metal is the lowest due to its fine homogeneous grain structure, small hydrogen diffusion coefficient, and small hydrogen diffusion rate. There are many hydrogen traps in annealed steel, such as the two-phase interface which provides accommodation sites for H atoms and increases the HIC susceptibility.


1998 ◽  
Vol 539 ◽  
Author(s):  
T. Cramer ◽  
A. Wanner ◽  
P. Gumbsch

AbstractTensile tests on notched plates of single-crystalline silicon were carried out at high overloads. Cracks were forced to propagate on {110} planes in a <110> direction. The dynamics of the fracture process was measured using the potential drop technique and correlated with the fracture surface morphology. Crack propagation velocity did not exceed a terminal velocity of v = 3800 m/s, which corresponds to 83%7 of the Rayleigh wave velocity vR. Specimens fractured at low stresses exhibited crystallographic cleavage whereas a transition from mirror-like smooth regions to rougher hackle zones was observed in case of the specimens fractured at high stresses. Inspection of the mirror zone at high magnification revealed a deviation of the {110} plane onto {111} crystallographic facets.


2021 ◽  
Author(s):  
Omar Shaaban ◽  
Eissa Al-Safran

Abstract The production and transportation of high viscosity liquid/gas two-phase along petroleum production system is a challenging operation due to the lack of understanding the flow behavior and characteristics. In particular, accurate prediction of two-phase slug length in pipes is crucial to efficiently operate and safely design oil well and separation facilities. The objective of this study is to develop a mechanistic model to predict high viscosity liquid slug length in pipelines and to optimize the proper set of closure relationships required to ensure high accuracy prediction. A large high viscosity liquid slug length database is collected and presented in this study, against which the proposed model is validated and compared with other models. A mechanistic slug length model is derived based on the first principles of mass and momentum balances over a two-phase slug unit, which requires a set of closure relationships of other slug characteristics. To select the proper set of closure relationships, a numerical optimization is carried out using a large slug length dataset to minimize the prediction error. Thousands of combinations of various slug flow closure relationships were evaluated to identify the most appropriate relationships for the proposed slug length model under high viscosity slug length condition. Results show that the proposed slug length mechanistic model is applicable for a wide range of liquid viscosities and is sensitive to the selected closure relationships. Results revealed that the optimum closure relationships combination is Archibong-Eso et al. (2018) for slug frequency, Malnes (1983) for slug liquid holdup, Jeyachandra et al. (2012) for drift velocity, and Nicklin et al. (1962) for the distribution coefficient. Using the above set of closure relationships, model validation yields 37.8% absolute average percent error, outperforming all existing slug length models.


Author(s):  
Chengcong Liao ◽  
Hongyi Zhao ◽  
Dong-Sheng Jeng

In this study, a two-dimensional poro-elasto-plastic model for the wave-induced liquefaction in a porous seabed was presented. Two mechanisms of the wave-induced pore pressures were considered. Both elastic components (for oscillatory) and the plastic components (for residual) were integrated to predict the wave-induced excess pore pressures in marine sediments. The proposed 2D poro-elasto-plastic model allows for the pore pressure build-up process in a sandy seabed. The proposed model overall agreed well with the previous wave experiments and centrifuge tests. Numerical example shows that the pattern of progressive waves -induced liquefaction gradually changed from 2D to 1D.


1951 ◽  
Vol 18 (1) ◽  
pp. 101-106
Author(s):  
J. T. Bergen ◽  
G. W. Scott

Abstract In the calendering, or rolling, of a plastic material in to sheet form by passing it between parallel rolls, hydrostatic pressure is exerted against the surface of the roll throughout the region of contact with the plastic mass. This pressure has been measured by means of a pressure-sensitive cylinder, inserted in the body of a 10-in-diam roll, together with high-speed oscillographic technique. The materials which were calendered consisted of a resin which exhibited flow properties characteristic of a viscous liquid, and several filled plastic compositions of commercial interest. Pressure maxima ranging up to 8000 psi were observed. Comparison of experimental results with theoretical expressions for pressure distribution, as given by several authors, indicates that the equation derived by Gaskell quite satisfactorily predicts the results for the case of the viscous liquid. The commercial plastics were found to exhibit pressure-distribution characteristics which were perceptibly different from those of the viscous liquid. Certain limitations of Gaskell’s treatment of nonviscous materials prevent its application to these experimental results.


2019 ◽  
Vol 6 (11) ◽  
pp. 190543 ◽  
Author(s):  
Yazhe Li ◽  
Nengxiong Xu ◽  
Jinzhi Tu ◽  
Gang Mei

The modelling and understanding of crack propagation for elastic–plastic materials is critical in various engineering applications, such as safety analysis of concrete structures and stability analysis of rock slopes. In this paper, the local radial basis point interpolation method (LRPIM) combined with elastic–plastic theory and fracture mechanics is employed to analyse crack propagation in elastic–plastic materials. Crack propagation in elastic–plastic materials is compared using the LRPIM and eXtended finite-element method (XFEM). The comparative investigation indicates that: (i) the LRPIM results are close to the model test results, which indicates that it is feasible for analysing the crack growth of elastic–plastic materials; (ii) compared with the LRPIM, the XFEM results are closer to the experimental results, showing that the XFEM has higher accuracy and computational efficiency; and (iii) compared with the XFEM, when the LRPIM method is used to analyse crack propagation, the propagation path is not smooth enough, which can be explained as the crack tip stress and strain not being accurate enough and still needing further improvement.


As most continuous casters used curved moulds, the as-cast strand must have sufficient hot ductility to survive the straightening operation without cracking. The influence of composition on the tendency for surface crack propagation to occur on straightening of concast strand of a commercial C—Mn-Nb-Al grade of steel, has been examined and compared with the hot ductility behaviour as measured by Gleeble tensile tests. Samples of steel with a nominal base composition of 0.15% C, 1.4% Mn, 0.03% Nb, 0.005 % N but having soluble A1 in the range < 0.01-0.07 % and P in the range 0.01-0.03 % have been solution treated to 1330 °C, cooled to test temperature and strained to fracture in the temperature range 1000-700 °C. The percentage reduction in area passed through a minimum in the temperature range 750-800 °C. Of the elements examined, soluble A1 was found to be the most deleterious to ductility for test temperatures above 850 °C. The niobium addition tended to reduce hot ductility most significantly for temperatures below 850 °C. Phosphorus, surprisingly, was found to have a small beneficial effect on hot ductility.


2015 ◽  
Vol 137 (3) ◽  
Author(s):  
Dong Ma ◽  
Changwei Liu ◽  
Changhui Cheng

Relative permeability as an important petrophysical parameter is often measured directly in the laboratory or obtained indirectly from the capillary pressure data. However, the literature on relationship between relative permeability and resistivity is lacking. To this end, a new model of inferring two-phase relative permeability from resistivity index data was derived on the basis of Poiseuille's law and Darcy's law. The wetting phase tortuosity ratio was included in the proposed model. The relative permeabilities computed from the capillary pressure data, as well as the experimental data measured in gas–water and oil–water flow condition, were compared with the proposed model. Both results demonstrated that the two-phase permeability obtained by proposed model were generally in good agreement with the data computed from capillary pressure and measured in the laboratory. The comparison also showed that our model was much better than Li model at matching the relative permeability data.


Sign in / Sign up

Export Citation Format

Share Document