Novel Gut Microbiota Modulator, Which Markedly Increases Akkermansia muciniphila Occupancy, Ameliorates Experimental Colitis in Rats

Author(s):  
Takako Nakashima ◽  
Kazuyuki Fujii ◽  
Toyokazu Seki ◽  
Masashi Aoyama ◽  
Atsushi Azuma ◽  
...  
2021 ◽  
Author(s):  
Ryohei Nishiguchi ◽  
Srijani Basu ◽  
Hannah A Staab ◽  
Naotake Ito ◽  
Xi Kathy Zhou ◽  
...  

Abstract Diet is believed to be an important factor in the pathogenesis of Inflammatory Bowel Disease. High consumption of dietary fructose has been shown to exacerbate experimental colitis, an effect mediated through the gut microbiota. This study evaluated whether dietary alterations could attenuate the detrimental effects of a high fructose diet (HFrD) in experimental colitis. First, we determined whether the pro-colitic effects of a HFrD could be reversed by switching mice from a HFrD to a control diet. This diet change completely prevented HFrD-induced worsening of acute colitis, in association with a rapid normalization of the microbiota. Second, we tested the effects of dietary fiber, which demonstrated that psyllium was the most effective type of fiber for protecting against HFrD-induced worsening of acute colitis, compared to pectin, inulin or cellulose. In fact, supplemental psyllium nearly completely prevented the detrimental effects of the HFrD, an effect associated with a shift in the gut microbiota. We next determined whether the protective effects of these interventions could be extended to chronic colitis and colitis-associated tumorigenesis. Using the azoxymethane/dextran sodium sulfate model, we first demonstrated that HFrD feeding exacerbated chronic colitis and increased colitis-associated tumorigenesis. Using the same dietary changes tested in the acute colitis setting, we also showed that mice were protected from HFrD-mediated enhanced chronic colitis and tumorigenesis, upon either diet switching or psyllium supplementation. Taken together, these findings suggest that high consumption of fructose may enhance colon tumorigenesis associated with long-standing colitis, an effect that could be reduced by dietary alterations.


PLoS ONE ◽  
2017 ◽  
Vol 12 (10) ◽  
pp. e0185999 ◽  
Author(s):  
Masashi Ohno ◽  
Atsushi Nishida ◽  
Yoshihiko Sugitani ◽  
Kyohei Nishino ◽  
Osamu Inatomi ◽  
...  

2019 ◽  
Vol 47 (4) ◽  
pp. 365-371 ◽  
Author(s):  
M. Demirci ◽  
H.B. Tokman ◽  
H.K. Uysal ◽  
S. Demiryas ◽  
A. Karakullukcu ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Fatemeh Ashrafian ◽  
Shahrbanoo Keshavarz Azizi Raftar ◽  
Arefeh Shahryari ◽  
Ava Behrouzi ◽  
Rezvan Yaghoubfar ◽  
...  

AbstractRecently, Akkermansia muciniphila an anaerobic member of the gut microbiota, has been proposed as a next-generation probiotic. The aim of this study was evaluation of the effect of alive and pasteurized A. muciniphila on health status, intestinal integrity, immune response, lipid metabolism, and gut microbial composition in normal-diet fed mice as well as direct effects of the bacterium on Caco-2 cell line. A total of 30 mice were distributed into three different groups, control, alive, and pasteurized A. muciniphila-treated group. After acclimation, control and treatment groups were administrated with PBS and 109 CFU/200µL of bacterial suspension for 5 weeks, respectively. Besides, Caco-2 separately exposed to alive, pasteurized A. muciniphila and PBS for 24 h. The results showed that administration of A. muciniphila leads to reduction in body, liver, and white adipose weight. Histology data revealed both treatments had no adverse effects in colon, liver, and adipose tissues as well as induced better gut structure. Moreover, biochemical parameters and inflammatory biomarkers in plasma demonstrated that pasteurized A. muciniphila had more pronounce effect. Furthermore, alive A. muciniphia had better effects on the modulation of gene expression related to fatty acid synthesis, energy homeostasis, and immune response in the liver; meanwhile, these effects in the adipose was more in the pasteurized A. muciniphila administration. More importantly, the improvement of gut health by enhancing strengthen intestinal integrity and maintaining immune homeostasis was seen in both treatments; notably, pasteurized A. muciniphila had more effective. Similarly, treatment with the pasteurized form more effectively upregulated tight junction and regulated immune response-related genes in Caco-2 cell line. Both treatments triggered the improvement of microbiota communities, particularly the alive form. Therefore, both forms of A. muciniphila could modulate lipid and immune homeostasis, improved some gut microbiota, and promoted the overall health, while all these effects were dominantly observed in pasteurized form. In conclusion, pasteurized A. muciniphila can be considered as new medical supplement to maintain health state and prevent diseases in normal mice through different mechanisms.


2019 ◽  
Vol 10 (5) ◽  
pp. 543-553 ◽  
Author(s):  
Y. Li ◽  
M. Liu ◽  
J. Zhou ◽  
B. Hou ◽  
X. Su ◽  
...  

Human inflammatory bowel disease (IBD) and experimental colitis models in mice are associated with shifts in gut microbiota composition, and several probiotics are widely used to improve gastrointestinal health. Here, we investigated whether the probiotic Bacillus licheniformis Zhengchangsheng® (BL) ameliorates dextran sulphate sodium (DSS)-induced colitis through alteration of the gut microbiota. Experimental colitis was induced in BALB/C mice by dissolving 3% DSS in their drinking water for 7 days, which were gavaged with 0.2 ml phosphate-buffered saline or BL (3×107 cfu/ml) once a day. Administration of BL attenuated several effects of DSS-induced colitis, including weight loss, increased disease activity index, and disrupted intestinal barrier integrity. In addition, BL mitigated the reduction in faecal microbiota richness in DSS treated mice. Interestingly, BL was found to reduce the elevated circulating endotoxin level in mice with colitis by modulating the microbial composition of the microbiota, and this was highly associated with a proportional decrease in gut Bacteroidetes. Our results demonstrate that BL can attenuate DSS-induced colitis and provide valuable insight into microbiota interactions during IBD.


Cells ◽  
2019 ◽  
Vol 8 (6) ◽  
pp. 517 ◽  
Author(s):  
Claudia Burrello ◽  
Maria Rita Giuffrè ◽  
Angeli Dominique Macandog ◽  
Angelica Diaz-Basabe ◽  
Fulvia Milena Cribiù ◽  
...  

Different gastrointestinal disorders, including inflammatory bowel diseases (IBD), have been linked to alterations of the gut microbiota composition, namely dysbiosis. Fecal microbiota transplantation (FMT) is considered an encouraging therapeutic approach for ulcerative colitis patients, mostly as a consequence of normobiosis restoration. We recently showed that therapeutic effects of FMT during acute experimental colitis are linked to functional modulation of the mucosal immune system and of the gut microbiota composition. Here we analysed the effects of therapeutic FMT administration during chronic experimental colitis, a condition more similar to that of IBD patients, on immune-mediated mucosal inflammatory pathways. Mucus and feces from normobiotic donors were orally administered to mice with established chronic Dextran Sodium Sulphate (DSS)-induced colitis. Immunophenotypes and functions of infiltrating colonic immune cells were evaluated by cytofluorimetric analysis. Compositional differences in the intestinal microbiome were analyzed by 16S rRNA sequencing. Therapeutic FMT in mice undergoing chronic intestinal inflammation was capable to decrease colonic inflammation by modulating the expression of pro-inflammatory genes, antimicrobial peptides, and mucins. Innate and adaptive mucosal immune cells manifested a reduced pro-inflammatory profile in FMT-treated mice. Finally, restoration of a normobiotic core ecology contributed to the resolution of inflammation. Thus, FMT is capable of controlling chronic intestinal experimental colitis by inducing a concerted activation of anti-inflammatory immune pathways, mechanistically supporting the positive results of FMT treatment reported in ulcerative colitis patients.


2020 ◽  
Vol 52 (9) ◽  
pp. 1002-1010 ◽  
Author(s):  
Loris Riccardo Lopetuso ◽  
Andrea Quagliariello ◽  
Mario Schiavoni ◽  
Valentina Petito ◽  
Alessandra Russo ◽  
...  

PLoS ONE ◽  
2013 ◽  
Vol 8 (10) ◽  
pp. e76520 ◽  
Author(s):  
Chil-sung Kang ◽  
Mingi Ban ◽  
Eun-Jeong Choi ◽  
Hyung-Geun Moon ◽  
Jun-Sung Jeon ◽  
...  

2014 ◽  
Vol 2 (3) ◽  
pp. 85
Author(s):  
C.H. Plunkett ◽  
M. Kleinschek ◽  
G. Le Gros ◽  
E.E. Forbes-Blom

Sign in / Sign up

Export Citation Format

Share Document