scholarly journals Comparative effects of alive and pasteurized Akkermansia muciniphila on normal diet-fed mice

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Fatemeh Ashrafian ◽  
Shahrbanoo Keshavarz Azizi Raftar ◽  
Arefeh Shahryari ◽  
Ava Behrouzi ◽  
Rezvan Yaghoubfar ◽  
...  

AbstractRecently, Akkermansia muciniphila an anaerobic member of the gut microbiota, has been proposed as a next-generation probiotic. The aim of this study was evaluation of the effect of alive and pasteurized A. muciniphila on health status, intestinal integrity, immune response, lipid metabolism, and gut microbial composition in normal-diet fed mice as well as direct effects of the bacterium on Caco-2 cell line. A total of 30 mice were distributed into three different groups, control, alive, and pasteurized A. muciniphila-treated group. After acclimation, control and treatment groups were administrated with PBS and 109 CFU/200µL of bacterial suspension for 5 weeks, respectively. Besides, Caco-2 separately exposed to alive, pasteurized A. muciniphila and PBS for 24 h. The results showed that administration of A. muciniphila leads to reduction in body, liver, and white adipose weight. Histology data revealed both treatments had no adverse effects in colon, liver, and adipose tissues as well as induced better gut structure. Moreover, biochemical parameters and inflammatory biomarkers in plasma demonstrated that pasteurized A. muciniphila had more pronounce effect. Furthermore, alive A. muciniphia had better effects on the modulation of gene expression related to fatty acid synthesis, energy homeostasis, and immune response in the liver; meanwhile, these effects in the adipose was more in the pasteurized A. muciniphila administration. More importantly, the improvement of gut health by enhancing strengthen intestinal integrity and maintaining immune homeostasis was seen in both treatments; notably, pasteurized A. muciniphila had more effective. Similarly, treatment with the pasteurized form more effectively upregulated tight junction and regulated immune response-related genes in Caco-2 cell line. Both treatments triggered the improvement of microbiota communities, particularly the alive form. Therefore, both forms of A. muciniphila could modulate lipid and immune homeostasis, improved some gut microbiota, and promoted the overall health, while all these effects were dominantly observed in pasteurized form. In conclusion, pasteurized A. muciniphila can be considered as new medical supplement to maintain health state and prevent diseases in normal mice through different mechanisms.

Nutrients ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 301 ◽  
Author(s):  
Moon Ho Do ◽  
Hye-Bin Lee ◽  
Eunjung Lee ◽  
Ho-Young Park

Diets high in gelatinized starch and high in gelatinized starch supplemented with salt-induced metabolic disorders and changes in gut microbiota have scarcely been studied. In this study, mice on wheat starch diets (WD) exhibited significantly higher body weight, white adipose tissue (WAT), and gut permeability compared to those on normal diet (ND). However, gelatinized wheat starch diet (GWD) and NaCl-supplemented gelatinized wheat starch diet (SGW) mice did not increase body and WAT weights or dyslipidemia, and maintained consistent colon pH at ND levels. WD mice showed higher levels of Desulfovibrio, Faecalibaculum, and Lactobacillus and lower levels of Muribaculum compared to ND mice. However, GWD and SGW mice showed a significantly different gut microbial composition, such as a lower proportion of Lactobacillus and Desulfovibrio, and higher proportion of Faecalibaculum and Muribaculum compared to WD mice. High starch diet-induced dysbiosis caused increase of lipid accumulation and inflammation-related proteins’ expression, thereby leading to non-alcoholic fatty liver disease. However, GWD and SGW showed lower levels than that, and it might be due to the difference in the gut microbial composition compared to WD. Taken together, diets high in gelatinized starch and high in gelatinized starch supplemented with salt induced mild metabolic disorders compared to native starch.


Author(s):  
Siwen Qu ◽  
Lina Fan ◽  
Yadong Qi ◽  
Chaochao Xu ◽  
Yingying Hu ◽  
...  

The gut microbiota and host immune response interaction influences the progression of intestinal inflammatory disease. As a well-recognized next-generation probiotic, Akkermansia muciniphila has been proved to play a crucial role in the progression of colitis, but its underlying mechanism remains inconclusive.


2019 ◽  
Author(s):  
Hua Zou ◽  
Dan Wang ◽  
Huahui Ren ◽  
Peishan Chen ◽  
Chao Fang ◽  
...  

AbstractCalorie restriction (CR), which has the potential effect to weight loss and blood amino acids, has been demonstrated to associate with gut microbiota in human, especially in obese individuals. However, studies for simultaneously evaluating enterotype-dependent impacts of CR on the gut microbiota and blood amino acids in nonobese individuals are still limited.Here, 41 nonobese individuals received a 3-week CR diet with approximately 50% fewer calories than normal diet. We measured their BMI and blood amino acid concentration, along with the gut microbiota before and after the intervention. In this trial, 28 Enterotype Bacteroides (ETB) subjects and 13 Enterotype Prevotella (ETP) subjects were identified before the intervention. Short-term CR dietary intervention decreased the body mass index (BMI) in most subjects but varied in subjects with different enterotypes. ETP subjects exhibited significantly higher BMI loss ratio than the ETB subjects. CR additionally induced substantial enterotype-independent changes in blood amino acids, but only minor changes in gut microbial composition.We further built a prediction model based on baseline relative abundances of 7 gut microbial species showing high performance in predicting CR-associated BMI loss ratio. Among them, the relative abundance of ETB-enriched Clostridium bolteae and C. ramosum were negatively correlated with BMI loss ratio while the relative abundance of Dorea longicatena which was slightly enriched in ETP subjects, was positively correlated with BMI loss ratio.Together, our work points out that the individual variation of BMI loss after CR could be partially correlated with different microbial composition and highlights the potential application for microbiome stratification in personalized nutrition intervention.


2021 ◽  
Vol 12 ◽  
Author(s):  
Johanna Rohrhofer ◽  
Benjamin Zwirzitz ◽  
Evelyne Selberherr ◽  
Eva Untersmayr

The large surfaces of gastrointestinal (GI) organs are well adapted to their diverse tasks of selective nutritional uptake and defense against the external environment. To maintain a functional balance, a vast number of immune cells is located within the mucosa. A strictly regulated immune response is required to impede constant inflammation and to maintain barrier function. An increasing prevalence of GI diseases has been reported in Western societies over the past decades. This surge in GI disorders has been linked to dietary changes followed by an imbalance of the gut microbiome, leading to a chronic, low grade inflammation of the gut epithelium. To counteract the increasing health care costs associated with diseases, it is paramount to understand the mechanisms driving immuno-nutrition, the associations between nutritional compounds, the commensal gut microbiota, and the host immune response. Dietary compounds such as lipids, play a central role in GI barrier function. Bioactive sphingolipids (SLs), e.g. sphingomyelin (SM), sphingosine (Sph), ceramide (Cer), sphingosine-1- phosphate (S1P) and ceramide-1-phosphate (C1P) may derive from dietary SLs ingested through the diet. They are not only integral components of cell membranes, they additionally modulate cell trafficking and are precursors for mediators and second messenger molecules. By regulating intracellular calcium levels, cell motility, cell proliferation and apoptosis, SL metabolites have been described to influence GI immune homeostasis positively and detrimentally. Furthermore, dietary SLs are suggested to induce a shift in the gut microbiota. Modes of action range from competing with the commensal bacteria for intestinal cell attachment to prevention from pathogen invasion by regulating innate and immediate defense mechanisms. SL metabolites can also be produced by gut microorganisms, directly impacting host metabolic pathways. This review aims to summarize recent findings on SL signaling and functional variations of dietary SLs. We highlight novel insights in SL homeostasis and SL impact on GI barrier function, which is directly linked to changes of the intestinal microbiota. Knowledge gaps in current literature will be discussed to address questions relevant for understanding the pivotal role of dietary SLs on chronic, low grade inflammation and to define a balanced and healthy diet for disease prevention and treatment.


Life ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 254
Author(s):  
Ying Wang ◽  
Jianqing Zhu ◽  
Jie Fang ◽  
Li Shen ◽  
Shuojia Ma ◽  
...  

We characterized the gut microbial composition and relative abundance of gut bacteria in the larvae and adults of Pieris canidia by 16S rRNA gene sequencing. The gut microbiota structure was similar across the life stages and sexes. The comparative functional analysis on P. canidia bacterial communities with PICRUSt showed the enrichment of several pathways including those for energy metabolism, immune system, digestive system, xenobiotics biodegradation, transport, cell growth and death. The parameters often used as a proxy of insect fitness (development time, pupation rate, emergence rate, adult survival rate and weight of 5th instars larvae) showed a significant difference between treatment group and untreated group and point to potential fitness advantages with the gut microbiomes in P. canidia. These data provide an overall view of the bacterial community across the life stages and sexes in P. canidia.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Camilo Quiroga-González ◽  
Luis Alberto Chica Cardenas ◽  
Mónica Ramírez ◽  
Alejandro Reyes ◽  
Camila González ◽  
...  

AbstractMicrobiome is known to play an important role in the health of organisms and different factors such as diet have been associated with modifications in microbial communities. Differences in the microbiota composition of wild and captive animals has been evaluated; however, variation during a reintroduction process in primates has never been reported. Our aim was to identify changes in the bacterial composition of three individuals of reintroduced woolly monkeys (Lagothrix lagothricha) and the variables associated with such changes. Fecal samples were collected and the V4 region of the 16S rRNA gene was sequenced to determine gut microbial composition and functionality. Individual samples from released individuals showed a higher microbial diversity after being released compared to before liberation, associated with changes in their diet. Beta diversity and functionality analysis showed separation of samples from released and captive conditions and the major factor of variation was the moment of liberation. This study shows that intestinal microbiota varies depending on site conditions and is mainly associated with diet diversity. The intake of food from wild origin by released primates may promote a positive effect on gut microbiota, improving health, and potentially increasing success in reintroduction processes.


Life ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 246
Author(s):  
Felix C.F. Schmitt ◽  
Martin Schneider ◽  
William Mathejczyk ◽  
Markus A. Weigand ◽  
Jane C. Figueiredo ◽  
...  

Changes in the gut microbiome have already been associated with postoperative complications in major abdominal surgery. However, it is still unclear whether these changes are transient or a long-lasting effect. Therefore, the aim of this prospective clinical pilot study was to examine long-term changes in the gut microbiota and to correlate these changes with the clinical course of the patient. Methods: In total, stool samples of 62 newly diagnosed colorectal cancer patients undergoing primary tumor resection were analyzed by 16S-rDNA next-generation sequencing. Stool samples were collected preoperatively in order to determine the gut microbiome at baseline as well as at 6, 12, and 24 months thereafter to observe longitudinal changes. Postoperatively, the study patients were separated into two groups—patients who suffered from postoperative complications (n = 30) and those without complication (n = 32). Patients with postoperative complications showed a significantly stronger reduction in the alpha diversity starting 6 months after operation, which does not resolve, even after 24 months. The structure of the microbiome was also significantly altered from baseline at six-month follow-up in patients with complications (p = 0.006). This was associated with a long-lasting decrease of a large number of species in the gut microbiota indicating an impact in the commensal microbiota and a long-lasting increase of Fusobacterium ulcerans. The microbial composition of the gut microbiome shows significant changes in patients with postoperative complications up to 24 months after surgery.


2021 ◽  
Vol 22 (5) ◽  
pp. 2674
Author(s):  
Chien-Ning Hsu ◽  
Julie Y. H. Chan ◽  
Kay L. H. Wu ◽  
Hong-Ren Yu ◽  
Wei-Chia Lee ◽  
...  

Gut microbiota-derived metabolites, in particular short chain fatty acids (SCFAs) and their receptors, are linked to hypertension. Fructose and antibiotics are commonly used worldwide, and they have a negative impact on the gut microbiota. Our previous study revealed that maternal high-fructose (HF) diet-induced hypertension in adult offspring is relevant to altered gut microbiome and its metabolites. We, therefore, intended to examine whether minocycline administration during pregnancy and lactation may further affect blood pressure (BP) programmed by maternal HF intake via mediating gut microbiota and SCFAs. Pregnant Sprague-Dawley rats received a normal diet or diet containing 60% fructose throughout pregnancy and lactation periods. Additionally, pregnant dams received minocycline (50 mg/kg/day) via oral gavage or a vehicle during pregnancy and lactation periods. Four groups of male offspring were studied (n = 8 per group): normal diet (ND), high-fructose diet (HF), normal diet + minocycline (NDM), and HF + minocycline (HFM). Male offspring were killed at 12 weeks of age. We observed that the HF diet and minocycline administration, both individually and together, causes the elevation of BP in adult male offspring, while there is no synergistic effect between them. Four groups displayed distinct enterotypes. Minocycline treatment leads to an increase in the F/B ratio, but decreased abundance of genera Lactobacillus, Ruminococcus, and Odoribacter. Additionally, minocycline treatment decreases plasma acetic acid and butyric acid levels. Hypertension programmed by maternal HF diet plus minocycline exposure is related to the increased expression of several SCFA receptors. Moreover, minocycline- and HF-induced hypertension, individually or together, is associated with the aberrant activation of the renin–angiotensin system (RAS). Conclusively, our results provide a new insight into the support of gut microbiota and its metabolite SCAFs in the developmental programming of hypertension and cast new light on the role of RAS in this process, which will help prevent hypertension programmed by maternal high-fructose and antibiotic exposure.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Lena Öhman ◽  
Anders Lasson ◽  
Anna Strömbeck ◽  
Stefan Isaksson ◽  
Marcus Hesselmar ◽  
...  

AbstractPatients with ulcerative colitis (UC) have an altered gut microbiota composition, but the microbial relationship to disease activity needs to be further elucidated. Therefore, temporal dynamics of the fecal microbial community during remission and flare was determined. Fecal samples were collected at 2–6 time-points from UC patients during established disease (cohort EST) and at diagnosis (cohort NEW). Sampling range for cohort EST was 3–10 months and for cohort NEW 36 months. Relapses were monitored for an additional three years for cohort EST. Microbial composition was assessed by Genetic Analysis GA-map Dysbiosis Test, targeting ≥ 300 bacteria. Eighteen patients in cohort EST (8 with maintained remission and 10 experiencing a flare), provided 71 fecal samples. In cohort NEW, 13 patients provided 49 fecal samples. The microbial composition showed no clustering related to disease activity in any cohort. Microbial dissimilarity was higher between than within patients for both cohorts, irrespective of presence of a flare. Microbial stability within patients was constant over time with no major shift in overall composition nor modification in the abundance of any specific species. Microbial composition was not affected by intensified medical treatment or linked to future disease course. Thus in UC, the gut microbiota is highly stable irrespective of disease stage, disease activity or treatment escalation. This suggests that prolonged dietary interventions or repeated fecal transplantations are needed to be able to induce permanent alterations of the gut microbiota.


Nutrients ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 1427
Author(s):  
Junhui Zhang ◽  
Fengqin Feng ◽  
Minjie Zhao

Glycerol monocaprylate (GMC) is a glycerol derivative of medium-chain fatty acids (MCFAs) and is widely used as a preservative in food processing. However, GMC and its hydrolytic acid (octylic acid) have antibacterial properties that may affect the physiology and intestinal microecology of the human body. Therefore, in this study, the effects of two different dosages of GMC (150 and 1600 mg kg−1) on glucose, lipid metabolism, inflammation, and intestinal microecology of normal diet-fed C57BL/6 mice were comprehensively investigated. The obtained results showed that the level of triglycerides (TGs) in the low-dose group down-regulated significantly, and the anti-inflammatory cytokine interleukin 10 (IL-10) significantly increased, while the pro-inflammatory cytokines monocyte chemotactic protein 1 (MCP-1) and interleukin 1beta (IL-1β) in the high-dose group were significantly decreased. Importantly, GMC promoted the α-diversity of gut microbiota in normal-diet-fed mice, regardless of dosages. Additionally, it was found that the low-dose treatment of GMC significantly increased the abundance of Lactobacillus, while the high-dose treatment of GMC significantly increased the abundance of SCFA-producers such as Clostridiales, Lachnospiraceae, and Ruminococcus. Moreover, the content of short-chain fatty acids (SCFAs) was significantly increased by GMC supplementation. Thus, our research provides a novel insight into the effects of GMC on gut microbiota and physiological characteristics.


Sign in / Sign up

Export Citation Format

Share Document