scholarly journals COVID-19’s U.S. Temperature Response Profile

Author(s):  
Richard T. Carson ◽  
Samuel L. Carson ◽  
Thayne K. Dye ◽  
Samuel A. Mayfield ◽  
Daniel C. Moyer ◽  
...  

AbstractWe estimate the U.S. temperature response profile (TRP) for COVID-19 and show it is highly sensitive to temperature variation. Replacing the erratic daily death counts U.S. states initially reported with counts based on death certificate date, we build a week-ahead statistical forecasting model that explains most of their daily variation (R2 = 0.97) and isolates COVID-19’s TRP (p < 0.001). These counts, normalized at 31 °C (U.S. mid-summer average), scale up to 160% at 5 °C in the static case where the infection pool is held constant. Positive case counts are substantially more temperature sensitive. When temperatures are declining, dynamic feedback through a growing infection pool can substantially amplify these temperature effects. Our estimated TRP can be incorporated into COVID-related planning exercises and used as an input to SEIR models employed for longer run forecasting. For the former, we show how our TRP is predictive of the realized pattern of growth rates in per capita positive cases across states five months after the end of our sample period. For the latter, we show the variation in herd immunity levels implied by temperature-driven, time-varying R0 series for the Alpha and Delta variants of COVID-19 for several representative states.

Author(s):  
Richard T. Carson ◽  
Samuel L. Carson ◽  
Thayne Keegan Dye ◽  
Samuel A. Mayfield ◽  
Daniel C. Moyer ◽  
...  

AbstractWe estimate the U.S. temperature response curve for COVID-19 and show transmission is highly sensitive to temperature variation despite summer outbreaks widely assumed to show otherwise. By largely replacing the daily death counts states initially reported with counts based on death certificate date, we build a week-ahead statistical forecasting model that explains most of the daily variation (R2 = 0.97) and isolates COVID-19’s temperature response profile (p < 0.001). These counts normalized at 31°C (U.S. mid-summer average) scale up to nearly 160% at 5°C. Positive cases are more temperature sensitive, scaling up to almost 400% between 31°C and 5°C. Dynamic feedback amplifies these effects, suggesting that cooling temperatures are likely to the substantially increase COVID-19 transmission.Article Summary LineCOVID-19’s temperature response profile is reliably estimated using re-assembled state-reported data and suggests the onset of cold weather will amplify its spread.


1995 ◽  
Vol 22 (5) ◽  
pp. 843 ◽  
Author(s):  
YP Wang ◽  
RM Gifford

Kernel growth after anthesis is simulated as a function of the potential kernel growth rate, current photosynthate production and mobilisation of stored reserves. The potential growth rate of the kernel is simulated as two temperature-sensitive processes, cell production and cell growth. The difference between the potential and actual growth rates of the kernel depends on the carbon supply to the free space of the kernel endosperm, while the carbon supply is itself affected by the actual kernel growth rate. Sensitivity analysis showed that the growth rate of the grain per plant is most sensitive to the potential growth rate of the kernel and number of kernels per plant. This model is able to simulate the observed rates of grain growth and leaf senescence from anthesis to physiological maturity for wheat plants grown in two CO2 concentrations. The simulated temperature response of grain growth agrees well with the experimenal observations.


2019 ◽  
Author(s):  
◽  
Aditi Mishra

Extrinsic control of neural activity is necessary to decipher the neural mechanisms underlying behavior. Molecular tools that employ light (optogenetics) or temperature (thermogenetics) are primarily used for extrinsic manipulation of neurons. While the available tools offer precise temporal and spatial resolution, their caveats lie in the limited number of tools that can be used simultaneously to alter neuronal activity. The overlapping spectrum of activation of optogenetic tools prevents their simultaneous use in preparations. Similarly, the lack of thermogenetic tools that can function in the physiological range of organisms has restricted their use. The use of thermogenetic tools is limited to two members from the Transient receptor family of proteins, TrpA1 and TrpM8 to activate neurons, and one protein that reduces synaptic output, Shibirets. A major drawback to the Trp channels is their response to both temperature and voltage changes. Hence, the discovery of a new temperature sensitive Gustatory Receptor protein provided an opportunity to mine for other temperature sensitive proteins and develop novel thermogenetic tools. In this thesis we report the identification of several thermosensitive proteins, their characterization, and use in studying the learning and memory of freely moving flies. In the first chapter, we probed several Gustatory receptors for their temperature sensitivity using the heat box. The heat box is a high throughput system that enables us to test and track the behavior of single flies in response to temperature. The top and bottom of heat box chamber has Peltier elements that allow for control of temperature with a resolution of 1[degrees]C. We overexpressed several Gustatory receptors one at a time pan neuronally in Drosophila melanogaster and exposed them to various assays. Our initials results imply that at least 2 Drosophila melanogaster Gustatory receptors other than Gr28bD are temperature sensitive. To increase the repertoire of thermosensitive proteins, we assayed for temperature response properties of Gr28bD orthologs from 5 other Drosophila species that occupy different habitats in the world. We rationalized that flies in different habitats will have Gr28bD orthologs with unique temperature response properties designed to sustain in that habitat. Of the 5 proteins we tested, we found that 4 proteins are temperature sensitive at different temperatures. While pan-neuronal overexpression is a robust method to determine the temperature responsiveness of a protein, it does not recapitulate the natural environment the protein is present in. In D. melanogaster, Gr28bD is present in specialized heat sensing cells in the antenna, called Hot Cells. There are 3 Hot cells on each of the two antennae. There is however no physiological information on the where the orthologs are expressed. Since Gr28bD is used for rapid heat avoidance in flies, we rationalized that its orthologs too sever a similar function in their host species and are expressed in the peripheral regions. Hence, in the second chapter, we tested for the avoidance behavior of flies using two choice assays. We made mutant flies that lacked Gr28b proteins, including Gr28bD in the antennae. We then examined the ability of the orthologs to rescue the heat avoidance behavior in these mutants. We found that all the orthologs respond to temperature differences albeit, at different temperatures. Above a threshold temperature, flies rescued with some orthologs could not differentiate between small temperature differences, suggesting that the activity of the orthologs might saturate beyond certain temperatures. Some homologs responded to temperature only when expressed in Hot Cells, thus leading us to examine the presence of accessory proteins it the hot cells that might be enhancing the thermosensitive properties of these homologs. We found several candidate proteins that can studied further to determine their role in the temperature sensing in the hot cells. When used as thermogenetic tools, thermosensitive proteins are in localized environments in small cluster of cells. In the third chapter, we expressed Gr28bD in small clusters of dopaminergic neurons in the fly brain with an aim to understand the role of activation of dopaminergic neurons in operant place learning and memory paradigm. In addition to examining their learning scores at different temperatures, we investigated other behaviors of the flies during the training. Contrary to previous results from our lab that showed that dopaminergic neurons are not important for place learning and memory, we found that activation of a specific subset of dopaminergic neurons does alter place learning and memory. Our findings new laid the groundwork for more experiments to investigate dopaminergic modulation of place learning and memory.


2020 ◽  
Vol 42 ◽  
pp. 35
Author(s):  
Greice Scherer Ritter ◽  
Eliezer Oliveira Cavalheiro ◽  
Ronaldo Barcelos e Silva ◽  
Leonardo Da Rosa Schmidt ◽  
Silvana Maldaner

The paper presents the results of a study with temperature measurements using low cost sensors connected to an Arduino microcontroller. To perform the study, three sensors widely used for monitoring environmental conditions with Arduino. The selected sensors were the LM35DZ (analog sensor) and DHT11 and DHT22 (digital sensors). The LM35DZ sensor is a sensor known to be an analog sensor that has linear temperature response with voltage. The DHT11 sensor measures temperature and humidity simultaneously.  To measure temperature the DHT11 sensor uses a temperature-sensitive resistor and has a measurement range from 0 to 50 °C, with an uncertainty ± 2% ° C. The DHT22 has a measurement range  -40 to 80 ° C and an uncertainty ± 1% ° C.  Simultaneous temperature measurements with the three sensors showed good performance in indoor situations, showing the maximum and minimum temperatures of a daily temperature cycle.


Micromachines ◽  
2021 ◽  
Vol 12 (10) ◽  
pp. 1247
Author(s):  
Juliane Diehm ◽  
Verena Hackert ◽  
Matthias Franzreb

In the last decade, the fabrication of microfluidic chips was revolutionized by 3D printing. It is not only used for rapid prototyping of molds, but also for manufacturing of complex chips and even integrated active parts like pumps and valves, which are essential for many microfluidic applications. The manufacturing of multiport injection valves is of special interest for analytical microfluidic systems, as they can reduce the injection to detection dead volume and thus enhance the resolution and decrease the detection limit. Designs reported so far use radial compression of rotor and stator. However, commercially available nonprinted valves usually feature axial compression, as this allows for adjustable compression and the possibility to integrate additional sealing elements. In this paper, we transfer the axial approach to 3D-printed valves and compare two different printing techniques, as well as six different sealing configurations. The tightness of the system is evaluated with optical examination, weighing, and flow measurements. The developed system shows similar performance to commercial or other 3D-printed valves with no measurable leakage for the static case and leakages below 0.5% in the dynamic case, can be turned automatically with a stepper motor, is easy to scale up, and is transferable to other printing methods and materials without design changes.


Author(s):  
Stefanie Arndt ◽  
Stephan Scholl

In industrial application heat transfer to temperature sensitive products in falling film evaporation is often linked to the evaporation at elevated viscosities. In the present study a scale-up capable falling film evaporator has been used to investigate the heat transfer to liquids with Prandtl numbers up to 150. The focus was on heated falling films during surface evaporation. Film-Reynolds numbers were varied from 48 to 10,000. As pure liquids water and cyclohexanol were used. In the results a distinct transition zone between laminar and turbulent flow can be observed for elevated Prandtl numbers. The comparison to literature models shows that more parameters have to be taken into account to properly predict the heat transfer in falling film evaporators for different equipment and fluids. The optical monitoring of the film on the inside of the evaporation tube through an endoscope showed that the fully turbulent regime could not been reached for high viscosities.


2020 ◽  
Vol 35 (4-5) ◽  
pp. 426-434
Author(s):  
Penghui Wang ◽  
Rong Yang ◽  
Shuai Liu ◽  
Yanhan Ren ◽  
Xin Liu ◽  
...  

Transmembrane delivery of biomolecules through nanoparticles plays an important role in targeted therapy. Here, we designed a simple nanoparticle for the delivery of model peptide drug into primary osteoclast precursor cells (bone marrow macrophages) by thermosensitive and biodegradable diblock copolymer monomethoxy poly(ethylene glycol)-block-poly(trimethylene carbonate). The model peptide drug was encapsulated into the nanoparticle by dropping the drug carrier dissolved in dimethylsulfoxide solvent into water containing poly(vinyl alcohol) to achieve temperature response nanoparticles. Through size analysis, we found that the nanoparticles possessed a temperature-sensitive property between 30°C and 40°C. Moreover, flow cytometry and spectrofluorimetry analysis indicated that nanoparticle systems underwent significant cellular uptake. In addition, the evaluation of cell biology showed that nanoparticles have excellent biocompatibility. Thus, the results indicated that the temperature-sensitive nanoparticles have potential application value for targeted delivery of oligopeptide in the treatment process of osteoarthritis.


2021 ◽  
Vol 54 (5) ◽  
pp. 1416-1423
Author(s):  
Oles Sendetskyi ◽  
Mark Salomons ◽  
Patricio Mendez ◽  
Michael Fleischauer

In situ and operando techniques play an important role in modern battery materials research and development. As materials characterization and application requirements advance, so too must the in situ/operando test methods and hardware. The effects of temperature, internal mechanical pressure and parasitic reactions due to, for example, cell sealing are critical for commercial scale-up but often overlooked in in situ/operando cell designs. An improved electrochemical operando cell for X-ray diffraction and spectroscopy using ConFlat-style flanges in combination with a beryllium window is presented. The cell is reusable and simple to fabricate and assemble, providing superior sealing, relevant and adjustable cell stack pressure, and reproducible charge/discharge cycling performance for short- and long-term experiments. Cell construction, electrochemical performance, and representative operando X-ray powder diffraction measurements with carbon and aluminium electrodes at temperatures between 303 and 393 K are provided. Operando electrochemical cell testing at high temperatures allows access to temperature-sensitive phase transitions and opens the way for analysis and development of new lithium-based cathode, anode and electrolyte materials for lithium-ion batteries.


2004 ◽  
Vol 287 (5) ◽  
pp. C1219-C1228 ◽  
Author(s):  
Todd C. Pappas ◽  
Massoud Motamedi ◽  
Burgess N. Christensen

Rattlesnakes, copperheads, and other pit vipers have highly sensitive heat detectors known as pit organs, which are used to sense and strike at prey. However, it is not currently known how temperature change triggers cellular and molecular events that activate neurons supplying the pit organ. We dissociated and cultured neurons from the trigeminal ganglia (TG) innervating the pit organs of the Western Diamondback rattlesnake ( Crotalus atrox) and the copperhead ( Agkistrodon contortix) to investigate electrophysiological responses to thermal stimuli. Whole cell voltage-clamp recordings indicated that 75% of the TG neurons from C. atrox and 74% of the TG neurons from A. contortix showed a unique temperature-activated inward current ( IΔT). We also found an IΔT-like current in 15% of TG neurons from the common garter snake, a species that does not have a specialized heat-sensing organ. A steep rise in the current-temperature relationship of IΔT started just below 18°C, and cooling temperature-responsive TG neurons from 20°C resulted in an outward current, suggesting that IΔT is on at relatively low temperatures. Ion substitution and Ca2+ imaging experiments indicated that IΔT is primarily a monovalent cation current. IΔT was not sensitive to capsaicin or amiloride, suggesting that the current did not show similar pharmacology to other mammalian heat-sensitive membrane proteins. Our findings indicate that a novel temperature-sensitive conductance with unique ion permeability and low-temperature threshold is expressed in TG neurons and may be involved in highly sensitive heat detection in snakes.


2015 ◽  
Vol 3 (39) ◽  
pp. 10099-10106 ◽  
Author(s):  
Yuqiong Zhou ◽  
Dongpeng Yan ◽  
Min Wei

CdTe quantum dot-based thin films with highly enhanced anodic electrochemiluminescence were developed, which can be used as a reversible temperature response and nitrite sensor.


Sign in / Sign up

Export Citation Format

Share Document