scholarly journals Gender specific excess mortality in Italy during the COVID-19 pandemic accounting for age

Author(s):  
Emilio A. L. Gianicolo ◽  
Antonello Russo ◽  
Britta Büchler ◽  
Katherine Taylor ◽  
Andreas Stang ◽  
...  

AbstractSince the beginning of the COVID-19 pandemic, data have been accumulated to examine excess mortality in the first half of 2020. Mortality in the preceding year or years is used to calculate the expected number of deaths, which is then compared with the actual number of deaths in 2020. We calculated weekly age- and sex-specific mortality rates for 93.1% of the Italian municipalities for the years 2015–2019 and for the first 26 weeks in 2020. We assumed the mortality experience during 2015–2019 as the reference period to calculate standardised mortality ratios. Furthermore, in order to compare the mortality experience of males and females, we calculated sex- and age- specific weekly direct standardised mortality rates and differences between the observed and expected number of deaths. We observed considerable changes in the demographics in the Italian population between the years 2015 and 2020, particularly among people 60 years and older and among males. The population is aging and the proportion of elderly males has increased, which was not reflected adequately in previous estimates of excess mortality. Standardized excess mortality results show that in Italy between the 8th and 26th weeks in 2020, there were 33,035 excess deaths, which is only 643 fewer deaths than the official COVID-19 death toll for this time period. A comparative increase in the mortality rates was observed in March among both sexes, but particularly for males. Comparisons with recently published data show considerably higher excess deaths, but these data were either not covering the complete country or did not account for age and sex. Neglecting the demographic changes in a region, even over a short time span, can result in biased estimates.

2021 ◽  
Author(s):  
Gabrielle E Kelly ◽  
Stefano Petti ◽  
Norman Noah

Abstract: Evidence that more people in some countries and fewer in others are dying because of the pandemic, than is reflected by reported Covid-19 mortality rates, is derived from mortality data. Worldwide, mortality data is used to estimate the full extent of the effects of the Covid-19 pandemic, both direct and indirect; the possible short fall in the number of cases reported to the WHO; and to suggest explanations for differences between countries. Excess mortality data is largely varying across countries and is not directly proportional to Covid-19 mortality. Using publicly available databases, deaths attributed to Covid-19 in 2020 and all deaths for the years 2015-2020 were tabulated for 36 countries together with economic, health, demographic, and government response stringency index variables. Residual death rates in 2020 were calculated as excess deaths minus death rates due to Covid-19 where excess deaths were observed deaths in 2020 minus the average for 2015-2019. For about half the countries, residual deaths were negative and for half, positive. The absolute rates in some countries were double those in others. In a regression analysis, the stringency index (p=0.026) was positively associated with residual mortality. There was no evidence of spatial clustering of residual mortality. The results show that published data on mortality from Covid-19 cannot be directly comparable across countries, likely due to differences in Covid-19 death reporting. In addition, the unprecedented public health measures implemented to control the pandemic may have produced either increased or reduced excess deaths due to other diseases. Further data on cause-specific mortality is required to determine the extent to which residual mortality represents non-Covid-19 deaths and to explain differences between countries.


Crisis ◽  
2011 ◽  
Vol 32 (4) ◽  
pp. 178-185 ◽  
Author(s):  
Maurizio Pompili ◽  
Marco Innamorati ◽  
Monica Vichi ◽  
Maria Masocco ◽  
Nicola Vanacore ◽  
...  

Background: Suicide is a major cause of premature death in Italy and occurs at different rates in the various regions. Aims: The aim of the present study was to provide a comprehensive overview of suicide in the Italian population aged 15 years and older for the years 1980–2006. Methods: Mortality data were extracted from the Italian Mortality Database. Results: Mortality rates for suicide in Italy reached a peak in 1985 and declined thereafter. The different patterns observed by age and sex indicated that the decrease in the suicide rate in Italy was initially the result of declining rates in those aged 45+ while, from 1997 on, the decrease was attributable principally to a reduction in suicide rates among the younger age groups. It was found that socioeconomic factors underlined major differences in the suicide rate across regions. Conclusions: The present study confirmed that suicide is a multifaceted phenomenon that may be determined by an array of factors. Suicide prevention should, therefore, be targeted to identifiable high-risk sociocultural groups in each country.


Author(s):  
Karin Modig ◽  
Anders Ahlbom ◽  
Marcus Ebeling

Abstract Background Sweden has one of the highest numbers of COVID-19 deaths per inhabitant globally. However, absolute death counts can be misleading. Estimating age- and sex-specific mortality rates is necessary in order to account for the underlying population structure. Furthermore, given the difficulty of assigning causes of death, excess all-cause mortality should be estimated to assess the overall burden of the pandemic. Methods By estimating weekly age- and sex-specific death rates during 2020 and during the preceding five years, our aim is to get more accurate estimates of the excess mortality attributed to COVID-19 in Sweden, and in the most affected region Stockholm. Results Eight weeks after Sweden’s first confirmed case, the death rates at all ages above 60 were higher than for previous years. Persons above age 80 were disproportionally more affected, and men suffered greater excess mortality than women in ages up to 75 years. At older ages, the excess mortality was similar for men and women, with up to 1.5 times higher death rates for Sweden and up to 3 times higher for Stockholm. Life expectancy at age 50 declined by less than 1 year for Sweden and 1.5 years for Stockholm compared to 2019. Conclusions The excess mortality has been high in older ages during the pandemic, but it remains to be answered if this is because of age itself being a prognostic factor or a proxy for comorbidity. Only monitoring deaths at a national level may hide the effect of the pandemic on the regional level.


2011 ◽  
Vol 140 (9) ◽  
pp. 1542-1550 ◽  
Author(s):  
L. YANG ◽  
K. P. CHAN ◽  
B. J. COWLING ◽  
S. S. CHIU ◽  
K. H. CHAN ◽  
...  

SUMMARYReliable estimates of the burden of 2009 pandemic influenza A(pH1N1) cannot be easily obtained because only a small fraction of infections were confirmed by laboratory tests in a timely manner. In this study we developed a Poisson prediction modelling approach to estimate the excess mortality associated with pH1N1 in 2009 and seasonal influenza in 1998–2008 in the subtropical city Hong Kong. The results suggested that there were 127 all-cause excess deaths associated with pH1N1, including 115 with cardiovascular and respiratory disease, and 22 with pneumonia and influenza. The excess mortality rates associated with pH1N1 were highest in the population aged ⩾65 years. The mortality burden of influenza during the whole of 2009 was comparable to those in the preceding ten inter-pandemic years. The estimates of excess deaths were more than twofold higher than the reported fatal cases with laboratory-confirmed pH1N1 infection.


2021 ◽  
Author(s):  
Alcione Miranda dos Santos ◽  
Bruno Feres de Souza ◽  
Carolina Abreu de Carvalho ◽  
Marcos Adriano Garcia Campos ◽  
Bruno Luciano Carneiro Alves de Oliveira ◽  
...  

SUMMARYObjectiveTo estimate the 2020 all-cause and COVID-19 excess mortality according to sex, age, race/color, and state, and to compare mortality rates by selected causes with that of the five previous years in Brazil.MethodsData from the Mortality Information System were used. Expected deaths for 2020 were estimated from 2015 to 2019 data using a negative binomial log-linear model.ResultsExcess deaths in Brazil in 2020 amounted to 13.7%, and the ratio of excess deaths to COVID-19 deaths was 0.90. Reductions in deaths from cardiovascular diseases (CVD), respiratory diseases, and external causes, and an increase in ill-defined causes were all noted. Excess deaths were also found to be heterogeneous, being higher in the Northern, Center-Western, and Northeastern states. In some states, the number of COVID-19 deaths was lower than that of excess deaths, whereas the opposite occurred in others. Moreover, excess deaths were higher in men, in those aged 20 to 59, and in black, yellow, or indigenous individuals. Meanwhile, excess mortality was lower in women, individuals aged 80 years or older, and in whites. Additionally, deaths among those aged 0 to 19 were 7.2% lower than expected, with reduction in mortality from respiratory diseases and external causes. There was also a drop in mortality due to external causes in men and in those aged 20 to 39 years. Furthermore, reductions in deaths from CVD and neoplasms were noted in some states and groups.ConclusionThere is evidence of underreporting of COVID-19 deaths and of the possible impact of restrictive measures in the reduction of deaths from external causes and respiratory diseases. The impacts of COVID-19 on mortality were heterogeneous among the states and groups, revealing that regional, demographic, socioeconomic, and racial differences expose individuals in distinct ways to the risk of death from both COVID-19 and other causes.


Stanovnistvo ◽  
2021 ◽  
Vol 59 (1) ◽  
pp. 1-16
Author(s):  
Ivan Cipin ◽  
Dario Mustac ◽  
Petra Medjimurec

The main goal of this paper is to assess the effects of the COVID-19 pandemic on mortality in Croatia. We estimate two effects of the pandemic on mortality: (1) excess mortality during 2020 and (2) the age- and cause-specific components of life expectancy decline in 2020. We calculate excess mortality in 2020 as the difference between the registered number of deaths in 2020 and the expected number of deaths from a Poisson regression model based on weekly death counts and population exposures by age and sex from 2016 to 2019. Using decomposition techniques, we estimate age- and cause-specific components (distinguishing COVID-19-related deaths from deaths from other causes) of life expectancy decline in 2020. Our results show that excess mortality in 2020 almost entirely results from the second, autumn-winter wave of the epidemic in Croatia. Expectedly, we find the highest excess in deaths in older age groups. In Croatia, life expectancy in 2020 fell by almost eight months for men and about seven months for women. This decline is mostly attributable to COVID-19-related mortality in older ages, especially among men.


2021 ◽  
pp. e1-e8
Author(s):  
Kevin Martinez-Folgar ◽  
Diego Alburez-Gutierrez ◽  
Alejandra Paniagua-Avila ◽  
Manuel Ramirez-Zea ◽  
Usama Bilal

Objectives. To describe excess mortality during the COVID-19 pandemic in Guatemala during 2020 by week, age, sex, and place of death. Methods. We used mortality data from 2015 to 2020, gathered through the vital registration system of Guatemala. We calculated weekly mortality rates, overall and stratified by age, sex, and place of death. We fitted a generalized additive model to calculate excess deaths, adjusting for seasonality and secular trends and compared excess deaths to the official COVID-19 mortality count. Results. We found an initial decline of 26% in mortality rates during the first weeks of the pandemic in 2020, compared with 2015 to 2019. These declines were sustained through October 2020 for the population younger than 20 years and for deaths in public spaces and returned to normal from July onward in the population aged 20 to 39 years. We found a peak of 73% excess mortality in mid-July, especially in the population aged 40 years or older. We estimated a total of 8036 excess deaths (95% confidence interval = 7935, 8137) in 2020, 46% higher than the official COVID-19 mortality count. Conclusions. The extent of this health crisis is underestimated when COVID-19 confirmed death counts are used. (Am J Public Health. Published online ahead of print September 23, 2021: e1–e8. https://doi.org/10.2105/AJPH.2021.306452 )


2021 ◽  
pp. 140349482110471
Author(s):  
Frederik E. Juul ◽  
Henriette C. Jodal ◽  
Ishita Barua ◽  
Erle Refsum ◽  
Ørjan Olsvik ◽  
...  

Background: Norway and Sweden are similar countries in terms of socioeconomics and health care. Norway implemented extensive COVID-19 measures, such as school closures and lockdowns, whereas Sweden did not. Aims: To compare mortality in Norway and Sweden, two similar countries with very different mitigation measures against COVID-19. Methods: Using real-world data from national registries, we compared all-cause and COVID-19-related mortality rates with 95% confidence intervals (CI) per 100,000 person-weeks and mortality rate ratios (MRR) comparing the five preceding years (2015–2019) with the pandemic year (2020) in Norway and Sweden. Results: In Norway, all-cause mortality was stable from 2015 to 2019 (mortality rate 14.6–15.1 per 100,000 person-weeks; mean mortality rate 14.9) and was lower in 2020 than from 2015 to 2019 (mortality rate 14.4; MRR 0.97; 95% CI 0.96–0.98). In Sweden, all-cause mortality was stable from 2015 to 2018 (mortality rate 17.0–17.8; mean mortality rate 17.1) and similar to that in 2020 (mortality rate 17.6), but lower in 2019 (mortality rate 16.2). Compared with the years 2015–2019, all-cause mortality in the pandemic year was 3% higher due to the lower rate in 2019 (MRR 1.03; 95% CI 1.02–1.04). Excess mortality was confined to people aged ⩾70 years in Sweden compared with previous years. The COVID-19-associated mortality rates per 100,000 person-weeks during the first wave of the pandemic were 0.3 in Norway and 2.9 in Sweden. Conclusions: All-cause mortality in 2020 decreased in Norway and increased in Sweden compared with previous years. The observed excess deaths in Sweden during the pandemic may, in part, be explained by mortality displacement due to the low all-cause mortality in the previous year.


Author(s):  
José Manuel Aburto ◽  
Ridhi Kashyap ◽  
Jonas Schöley ◽  
Colin Angus ◽  
John Ermisch ◽  
...  

AbstractBackgroundDeaths directly linked to COVID-19 infection may be misclassified, and the pandemic may have indirectly affected other causes of death. To overcome these measurement challenges, we estimate the impact of the COVID-19 pandemic on mortality, life expectancy and lifespan inequality from week 10, when the first COVID-19 death was registered, to week 47 ending November 20, 2020 in England and Wales through an analysis of excess mortality.MethodsWe estimated age and sex-specific excess mortality risk and deaths above a baseline adjusted for seasonality with a systematic comparison of four different models using data from the Office for National Statistics. We additionally provide estimates of life expectancy at birth and lifespan inequality defined as the standard deviation in age at death.ResultsThere have been 57,419 (95% Prediction Interval: 54,197, 60,752) excess deaths in the first 47 weeks of 2020, 55% of which occurred in men. Excess deaths increased sharply with age and men experienced elevated risks of death in all age groups. Life expectancy at birth dropped 0.9 and 1.2 years for females and males relative to the 2019 levels, respectively. Lifespan inequality also fell over the same period by five months for both sexes.ConclusionQuantifying excess deaths and their impact on life expectancy at birth provides a more comprehensive picture of the burden of COVID-19 on mortality. Whether mortality will return to -or even fall below-the baseline level remains to be seen as the pandemic continues to unfold and diverse interventions are put in place.Summary boxesWhat is already known on this topicCOVID-19 related deaths may be misclassified thereby inaccurately estimating the full impact of the pandemic on mortality. The pandemic may also have indirect effects on other causes due to changed behaviours, as well as the social and economic consequences resulting from its management. Excess mortality, the difference between observed deaths and what would have been expected in the absence of the pandemic, is a useful metric to quantify the overall impact of the pandemic on mortality and population health. Life expectancy at birth and lifespan inequality assess the cumulative impact of the pandemic on population health.What this study addsWe examine death registration data from the Office for National Statistics from 2010 to week 47 (ending on November 20) in 2020 to quantify the impact of the COVID-19 pandemic on mortality in England and Wales thus far. We estimate excess mortality risk by age and sex, and quantify the impact of excess mortality risk on excess deaths, life expectancy and lifespan inequality. During weeks 10 through 47 of 2020, elevated mortality rates resulted in 57,419 additional deaths compared with baseline mortality. Life expectancy at birth for females and males over the 47 weeks of 2020 was 82.6 and 78.7 years, with 0.9 and 1.2 years of life lost relative to the year 2019. Lifespan inequality, a measure of the spread or variation in ages at death, declined due to the increase of mortality at older ages.


2021 ◽  
Vol 55 ◽  
pp. 71
Author(s):  
Alcione Miranda dos Santos ◽  
Bruno Feres de Souza ◽  
Carolina Abreu de Carvalho ◽  
Marcos Adriano Garcia Campos ◽  
Bruno Luciano Carneiro Alves de Oliveira ◽  
...  

OBJECTIVE To estimate the 2020 all-cause and COVID-19 excess mortality according to sex, age, race/color, and state, and to compare mortality rates by selected causes with that of the five previous years in Brazil. METHODS Data from the Mortality Information System were used. Expected deaths for 2020 were estimated from 2015 to 2019 data using a negative binomial log-linear model. RESULTS Excess deaths in Brazil in 2020 amounted to 13.7%, and the ratio of excess deaths to COVID-19 deaths was 0.90. Reductions in deaths from cardiovascular diseases (CVD), respiratory diseases, and external causes, and an increase in ill-defined causes were all noted. Excess deaths were also found to be heterogeneous, being higher in the Northern, Center-Western, and Northeastern states. In some states, the number of COVID-19 deaths was lower than that of excess deaths, whereas the opposite occurred in others. Moreover, excess deaths were higher in men aged 20 to 59, and in black, yellow, or indigenous individuals. Meanwhile, excess mortality was lower in women, in individuals aged 80 years or older, and in whites. Additionally, deaths among those aged 0 to 19 were 7.2% lower than expected, with reduction in mortality from respiratory diseases and external causes. There was also a drop in mortality due to external causes in men and in those aged 20 to 39 years. Moreover, reductions in deaths from CVD and neoplasms were noted in some states and groups. CONCLUSION There is evidence of underreporting of COVID-19 deaths and of the possible impact of restrictive measures in the reduction of deaths from external causes and respiratory diseases. The impacts of COVID-19 on mortality were heterogeneous among the states and groups, revealing that regional, demographic, socioeconomic, and racial differences expose individuals in distinct ways to the risk of death from both COVID-19 and other causes.


Sign in / Sign up

Export Citation Format

Share Document