scholarly journals Variation in herpetofauna detection probabilities: implications for study design

2021 ◽  
Vol 193 (10) ◽  
Author(s):  
Jeremy A. Baumgardt ◽  
Michael L. Morrison ◽  
Leonard A. Brennan ◽  
Madeleine Thornley ◽  
Tyler A. Campbell

AbstractPopulation monitoring is fundamental for informing management decisions aimed at reducing the rapid rate of global biodiversity decline. Herpetofauna are experiencing declines worldwide and include species that are challenging to monitor. Raw counts and associated metrics such as richness indices are common for monitoring populations of herpetofauna; however, these methods are susceptible to bias as they fail to account for varying detection probabilities. Our goal was to develop a program for efficiently monitoring herpetofauna in southern Texas. Our objectives were to (1) estimate detection probabilities in an occupancy modeling framework using trap arrays for a diverse group of herpetofauna and (2) to evaluate the relative effectiveness of funnel traps, pitfall traps, and cover boards. We collected data with 36 arrays at 2 study sites in 2015 and 2016, for 2105 array-days resulting in 4839 detections of 51 species. We modeled occupancy for 21 species and found support for the hypothesis that detection probability varied over our sampling duration for 10 species and with rainfall for 10 species. For herpetofauna in our study, we found 14 and 12 species were most efficiently captured with funnel traps and pitfall traps, respectively, and no species were most efficiently captured with cover boards. Our results show that using methods that do not account for variations in detection probability are highly subject to bias unless the likelihood of false absences is minimized with exceptionally long capture durations. For monitoring herpetofauna in southern Texas, we recommend using arrays with funnel and pitfall traps and an analytical method such as occupancy modeling that accounts for variation in detection.

2014 ◽  
Vol 36 (1) ◽  
pp. 60 ◽  
Author(s):  
Brendan D. Taylor ◽  
Ross L. Goldingay ◽  
John M. Lindsay

Camera traps can detect rare and cryptic species, and may enable description of the stability of populations of threatened species. We investigated the relative performance of cameras oriented horizontally or vertically, and recording mode (still and video) to detect the vulnerable long-nosed potoroo (Potorous tridactylus) as a precursor to population monitoring. We established camera traps for periods of 13–21 days across 21 sites in Richmond Range National Park in north-east New South Wales. Each camera trap set consisted of three KeepGuard KG680V cameras directed at a bait container – one horizontal and one vertical camera in still mode and one horizontal camera in video mode. Potoroos and bandicoots (Perameles nasuta and Isoodon macrourus) were detected at 14 sites and pademelons (Thylogale stigmatica and T. thetis) were detected at 19 sites. We used program Presence to compare detection probabilities for each camera category. The detection probability for all three taxa groups was lowest for the vertical still and similar for the horizontal cameras. The detection probability (horizontal still) was highest for the potoroos (0.43) compared with the bandicoots (0.16) and pademelons (0.25). We estimate that the horizontal stills camera could achieve a 95% probability of detection of a potoroo within 6 days compared with 8 days using a vertical stills camera. This suggests that horizontal cameras in still mode have great potential for monitoring the dynamics of this potoroo population.


Paleobiology ◽  
10.1666/12009 ◽  
2013 ◽  
Vol 39 (2) ◽  
pp. 193-213 ◽  
Author(s):  
Lee Hsiang Liow

Preservation in the fossil record is never perfect in the sense that we cannot sample all individuals of a given population in time and space. Incomplete detection (i.e., preservation and modern-day sampling of fossils) often affects estimates of other paleobiological parameters of interest, such as occupancy and turnover. Here, I simultaneously model the occupancy and detection probability of taxa, teasing apart the zeros in data that reflect true absences and those that imply non-detection of taxa that were actually present in the space and time of interest. Occupancy modeling, an approach first developed in population ecology, can easily incorporate covariates of interest, such as sampling effort and habitat variables. I use a data set of brachiopod taxa from the Paleozoic to illustrate the utility of this approach for paleontological questions. I demonstrate a range of models, including those that allow colonization between time intervals and those that incorporate facies as site covariates. I also suggest how future data collection can be improved so that process- and sampling-oriented approaches such as occupancy modeling can be applied with ease to paleobiological settings to answer important paleoecological and evolutionary questions.


NeoBiota ◽  
2020 ◽  
Vol 60 ◽  
pp. 117-136
Author(s):  
Adam S. Smart ◽  
Reid Tingley ◽  
Ben L. Phillips

Islands are increasingly used to protect endangered populations from the negative impacts of invasive species. Quarantine efforts on islands are likely to be undervalued in circumstances in which a failure incurs non-economic costs. One approach to ascribe monetary value to such efforts is by modeling the expense of restoring a system to its former state. Using field-based removal experiments on two different islands off northern Australia separated by > 400 km, we estimate cane toad densities, detection probabilities, and the resulting effort needed to eradicate toads from an island. We use these estimates to conservatively evaluate the financial benefit of cane toad quarantine across offshore islands prioritized for conservation management by the Australian federal government. We calculate density as animals per km of freshwater shoreline, and find striking concordance of density estimates across our two island study sites: a mean density of 352 [289, 466] adult toads per kilometre on one island, and a density of 341 [298, 390] on the second. Detection probability differed between our two study islands (Horan Island: 0.1 [0.07, 0.13]; Indian Island: 0.27 [0.22, 0.33]). Using a removal model and the financial costs incurred during toad removal, we estimate that eradicating cane toads would, on average, cost between $22 487 [$14 691, $34 480] (based on Horan Island) and $39 724 [$22 069, $64 001] AUD (Indian Island) per km of available freshwater shoreline. We estimate the remaining value of toad quarantine across islands that have been prioritized for conservation benefit within the toads’ predicted range, and find the net value of quarantine efforts to be $43.4 [28.4–66.6] – $76.7 [42.6–123.6] M depending on which island dataset is used to calibrate the model. We conservatively estimate the potential value of a mainland cane toad containment strategy – to prevent the spread of toads into the Pilbara Bioregion – to be $80 [52.6–123.4] – $142 [79.0–229.0] M. We present a modeling framework that can be used to estimate the value of preventative management, via estimating the length and cost of an eradication program. Our analyses suggest that there is substantial economic value in cane toad quarantine efforts across Australian offshore islands and in a proposed mainland containment strategy.


2021 ◽  
Vol 11 (5) ◽  
pp. 2198
Author(s):  
Junwoo Jung ◽  
Jaesung Lim ◽  
Sungyeol Park ◽  
Haengik Kang ◽  
Seungbok Kwon

A frequency hopping orthogonal frequency division multiple access (FH-OFDMA) can provide low probability of detection (LPD) and anti-jamming capabilities to users against adversary detectors. To obtain an extreme LPD capability that cannot be provided by the basic symbol-by-symbol (SBS)-based FH pattern, we proposed two FH patterns, namely chaotic standard map (CSM) and cat map for FH-OFDMA systems. In our previous work, through analysis of complexity to regenerate the transmitted symbol sequence, at the point of adversary detectors, we found that the CSM had a lower probability of intercept than the cat map and SBS. It is possible when a detector already knows symbol and frame structures, and the detector has been synchronized to the FH-OFDMA system. Unlike the previous work, here, we analyze whether the CSM provides greater LPD capability than the cat map and SBS by detection probability using spectrum sensing technique. We analyze the detection probability of the CSM and provide detection probabilities of the cat map and SBS compared to the CSM. Based on our analysis of the detection probability and numerical results, it is evident that the CSM provides greater LPD capability than both the cat map and SBS-based FH-OFDMA systems.


2006 ◽  
Vol 3 (3) ◽  
pp. 819-857
Author(s):  
N. B. Yenigül ◽  
A.T. Hendsbergen ◽  
A. M. M. Elfeki ◽  
F. M. Dekking

Abstract. Contaminant leaks released from landfills are a significant threat to groundwater quality. The groundwater detection monitoring systems installed in the vicinity of such facilities are vital. In this study the detection probability of a contaminant plume released from a landfill has been investigated by means of both a simulation and an analytical model for both homogeneous and heterogeneous aquifer conditions. The results of the two models are compared for homogeneous aquifer conditions to illustrate the errors that might be encountered with the simulation model. For heterogeneous aquifer conditions contaminant transport is modelled by an analytical model using effective (macro) dispersivities. The results of the analysis show that the simulation model gives the concentration values correctly over most of the plume length for homogeneous aquifer conditions, and that the detection probability of a contaminant plume at given monitoring well locations match quite well. For heterogeneous aquifer conditions the approximating analytical model based on effective (macro) dispersivities yields the average concentration distribution satisfactorily. However, it is insufficient in monitoring system design since the discrepancy between the detection probabilities of contaminant plumes at given monitoring well locations computed by the two models is significant, particularly with high dispersivity and heterogeneity.


2010 ◽  
Vol 67 (4) ◽  
pp. 641-658 ◽  
Author(s):  
Michael C. Melnychuk ◽  
Carl J. Walters

We developed a method to predict the probability of detecting acoustic tags crossing a receiver station using only detection information at that station. This method is suitable for acoustic or radio telemetry studies in which individually tagged animals migrate past fixed stations (where a station may consist of one or more receivers). It is based on fitting attenuation models to sequences of detections and missed transmissions of individually coded tags in fish migrating past stations of the Pacific Ocean Shelf Tracking Project (POST). We used estimated attenuation model parameters from detected fish at each station to predict the number of fish that crossed the station undetected, which in turn was used to calculate the local detection probability. This estimator was correlated (r = 0.54–0.81 in river and coastal habitats) with mark–recapture estimates of detection probability (pmr) that use nonlocal detection information at stations further along migration routes. This local detection probability estimate can be used as a covariate of pmr in mark–recapture models and can predict approximate values of pmr at final detection stations where pmr is not estimable because of the lack of recaptures further along migration routes.


The Auk ◽  
2006 ◽  
Vol 123 (3) ◽  
pp. 735-752 ◽  
Author(s):  
Michelle L. Kissling ◽  
Edward O. Garton

Abstract Point counts are the method most commonly used to estimate abundance of birds, but they often fail to account properly for incomplete and variable detection probabilities. We developed a technique that combines distance and double-observer sampling to estimate detection probabilities and effective area surveyed. We applied this paired-observer, variable circular-plot (POVCP) technique to point-count surveys (n = 753) conducted in closed-canopy forests of southeast Alaska. Distance data were analyzed for each species to model a detection probability for each observer and calculate an estimate of density. We then multiplied each observer's density estimates by a correction factor to adjust for detection probabilities <1 at plot center. We compared analytical results from four survey methods: single-observer fixed-radius (50-m) plot; single-observer, variable circular-plot (SOVCP); double-observer fixed-radius (50-m) plot; and POVCP. We examined differences in detection probabilities at plot center, effective area surveyed, and densities for five bird species: Pacific-slope Flycatcher (Empidonax difficilis), Winter Wren (Troglodytes troglodytes), Golden-crowned Kinglet (Regulus satrapa), Hermit Thrush (Catharus guttatus), and Townsend's Warbler (Dendroica townsendi). Average detection probabilities for paired observers increased ≈8% (SE = 2.9) for all species once estimates were corrected for birds missed at plot center. Density estimators of fixed-radius survey methods were likely negatively biased, because the key assumption of perfect detection was not met. Density estimates generated using SOVCP and POVCP were similar, but standard errors were much lower for the POVCP survey method. We recommend using POVCP when study objectives require precise estimates of density. Failure to account for differences in detection probabilities and effective area surveyed results in biased population estimators and, therefore, faulty inferences about the population in question. Estimaciones de la Densidad y de las Probabilidades de Detección a Partir de Muestreos Utilizando Conteos en Puntos: Una Combinación de Muestreos de Distancia y de Doble Observador


The Condor ◽  
2007 ◽  
Vol 109 (4) ◽  
pp. 943-948
Author(s):  
Wayne E. Thogmartin ◽  
Brian R. Gray ◽  
Maureen Gallagher ◽  
Neal Young ◽  
Jason J. Rohweder ◽  
...  

Abstract Avian point counts for population monitoring are often collected over a short timespan (e.g., 3–5 years). We examined whether power was adequate (power ≥0.80) in short-duration studies to warrant the calculation of trend estimates. We modeled power to detect trends in abundance indices of eight bird species occurring across three floodplain habitats (wet prairie, early successional forest, and mature forest) as a function of trend magnitude, sample size, and species-specific sampling and among-year variance components. Point counts (5 min) were collected from 365 locations distributed among 10 study sites along the lower Missouri River; counts were collected over the period 2002 to 2004. For all study species, power appeared adequate to detect trends in studies of short duration (three years) at a single site when exponential declines were relatively large in magnitude (more than −5% year−1) and the sample of point counts per year was ≥30. Efforts to monitor avian trends with point counts in small managed lands (i.e., refuges and parks) should recognize this sample size restriction by including point counts from offsite locations as a means of obtaining sufficient numbers of samples per strata. Trends of less than −5% year−1 are not likely to be consistently detected for most species over the short term, but short-term monitoring may still be useful as the basis for comparisons with future surveys.


2013 ◽  
Vol 40 (5) ◽  
pp. 393 ◽  
Author(s):  
P. L. Dostine ◽  
S. J. Reynolds ◽  
A. D. Griffiths ◽  
G. R. Gillespie

Context Failure to acknowledge potential bias from imperfect detection of cryptic organisms such as frogs may compromise survey and monitoring programmes targeting these species. Aims The aims of the present study were to identify proximate factors influencing detection probabilities of a range of frog species in monsoonal northern Australia, and to estimate the number of repeat censuses required at a site to have confidence that non-detected species are absent. Methods Data on detection or non-detection of frog species based on calling individuals were recorded during 10 wet-season censuses of 29 survey sites in the Darwin region. Factors influencing detection probabilities were identified using occupancy models; model selection was based on the Akaike information criterion. Sampling effort for individual species was calculated using model predictions at different stages of the wet season. Key results The covariate water temperature featured in the best-supported models for 7 of the 14 frog species. Six of these species were more likely to be detected when water temperatures were below 30°C. Detection probabilities were also correlated with the number of days since the commencement of the wet season, time since last significant rainfall, air temperature and time after sunset. Required sampling effort for individual species varied throughout the wet season. For example, a minimum of two repeat censuses was required for detection of Litoria caerulea in the early wet season, but this number increased to 13 in the middle stage of the wet season. Conclusions Variability in environmental conditions throughout the wet season leads to variability in detection probabilities of frog species in northern Australia. Lower water temperatures, mediated by rainfall immediately before or during surveys, enhances detectability of a range of species. For most species, three repeat surveys under conditions resulting in a high detection probability are sufficient to determine presence at a site. Implications Survey and monitoring programmes for frogs in tropical northern Australia will benefit from the results of the present study by allowing targeting of conditions of high detection probability for individual species, and by incorporating sufficient repeat censuses to provide accurate assessment of the status of individual species at a site.


2012 ◽  
Vol 2012 ◽  
pp. 1-9 ◽  
Author(s):  
Renata Pacheco ◽  
Heraldo L. Vasconcelos

The use of subterranean traps is a relatively novel method to sample ants, and few studies have evaluated its performance relative to other methods. We collected ants in forests, savannas, and crops in central Brazil using subterranean pitfall traps and conventional pitfall traps placed on the soil surface. Sampling duration, soil depth, and sprinkling vegetal oil around traps all tended to affect the number of species found in subterranean traps. Sixteen percent of the species collected in subterranean traps were unique, and most of these had cryptobiotic morphology (i.e., were truly hypogaeic species). Surprisingly, however, subterranean and conventional traps were similarly efficient at capturing cryptobiotic species. Furthermore, subterranean traps captured far fewer species in total than conventional traps (75 versus 220 species), and this was true in all three habitats sampled. Sampling completeness increased very little using a combination of conventional and subterranean traps than using just conventional traps.


Sign in / Sign up

Export Citation Format

Share Document