scholarly journals Variation of the adaptive substitution rate between species and within genomes

2019 ◽  
Vol 34 (3) ◽  
pp. 315-338 ◽  
Author(s):  
Ana Filipa Moutinho ◽  
Thomas Bataillon ◽  
Julien Y. Dutheil

AbstractThe importance of adaptive mutations in molecular evolution is extensively debated. Recent developments in population genomics allow inferring rates of adaptive mutations by fitting a distribution of fitness effects to the observed patterns of polymorphism and divergence at sites under selection and sites assumed to evolve neutrally. Here, we summarize the current state-of-the-art of these methods and review the factors that affect the molecular rate of adaptation. Several studies have reported extensive cross-species variation in the proportion of adaptive amino-acid substitutions (α) and predicted that species with larger effective population sizes undergo less genetic drift and higher rates of adaptation. Disentangling the rates of positive and negative selection, however, revealed that mutations with deleterious effects are the main driver of this population size effect and that adaptive substitution rates vary comparatively little across species. Conversely, rates of adaptive substitution have been documented to vary substantially within genomes. On a genome-wide scale, gene density, recombination and mutation rate were observed to play a role in shaping molecular rates of adaptation, as predicted under models of linked selection. At the gene level, it has been reported that the gene functional category and the macromolecular structure substantially impact the rate of adaptive mutations. Here, we deliver a comprehensive review of methods used to infer the molecular adaptive rate, the potential drivers of adaptive evolution and how positive selection shapes molecular evolution within genes, across genes within species and between species.

2019 ◽  
Author(s):  
Nicolas Galtier ◽  
Marjolaine Rousselle

AbstractGenetic drift is an important evolutionary force of strength inversely proportional to Ne, the effective population size. The impact of drift on genome diversity and evolution is known to vary among species, but quantifying this effect is a difficult task. Here we assess the magnitude of variation in drift power among species of animals via its effect on the mutation load – which implies also inferring the distribution of fitness effects of deleterious mutations (DFE). To this aim, we analyze the non-synonymous (amino-acid changing) and synonymous (amino-acid conservative) allele frequency spectra in a large sample of metazoan species, with a focus on the primates vs. fruit flies contrast. We show that a Gamma model of the DFE is not suitable due to strong differences in estimated shape parameters among taxa, while adding a class of lethal mutations essentially solves the problem. Using the Gamma + lethal model and assuming that the mean deleterious effects of non-synonymous mutations is shared among species, we estimate that the power of drift varies by a factor of at least 500 between large-Ne and small-Ne species of animals, i.e., an order of magnitude more than the among-species variation in genetic diversity. Our results are relevant to Lewontin’s paradox while further questioning the meaning of the Ne parameter in population genomics.


Genetics ◽  
2020 ◽  
Vol 216 (2) ◽  
pp. 559-572 ◽  
Author(s):  
Nicolas Galtier ◽  
Marjolaine Rousselle

Genetic drift is an important evolutionary force of strength inversely proportional to Ne, the effective population size. The impact of drift on genome diversity and evolution is known to vary among species, but quantifying this effect is a difficult task. Here we assess the magnitude of variation in drift power among species of animals via its effect on the mutation load – which implies also inferring the distribution of fitness effects of deleterious mutations. To this aim, we analyze the nonsynonymous (amino-acid changing) and synonymous (amino-acid conservative) allele frequency spectra in a large sample of metazoan species, with a focus on the primates vs. fruit flies contrast. We show that a Gamma model of the distribution of fitness effects is not suitable due to strong differences in estimated shape parameters among taxa, while adding a class of lethal mutations essentially solves the problem. Using the Gamma + lethal model and assuming that the mean deleterious effects of nonsynonymous mutations is shared among species, we estimate that the power of drift varies by a factor of at least 500 between large-Ne and small-Ne species of animals, i.e., an order of magnitude more than the among-species variation in genetic diversity. Our results are relevant to Lewontin’s paradox while further questioning the meaning of the Ne parameter in population genomics.


2019 ◽  
Vol 12 (1) ◽  
pp. 3550-3561 ◽  
Author(s):  
David Castellano ◽  
Adam Eyre-Walker ◽  
Kasper Munch

Abstract DNA diversity varies across the genome of many species. Variation in diversity across a genome might arise from regional variation in the mutation rate, variation in the intensity and mode of natural selection, and regional variation in the recombination rate. We show that both noncoding and nonsynonymous diversity are positively correlated to a measure of the mutation rate and the recombination rate and negatively correlated to the density of conserved sequences in 50 kb windows across the genomes of humans and nonhuman homininae. Interestingly, we find that although noncoding diversity is equally affected by these three genomic variables, nonsynonymous diversity is mostly dominated by the density of conserved sequences. The positive correlation between diversity and our measure of the mutation rate seems to be largely a direct consequence of regions with higher mutation rates having more diversity. However, the positive correlation with recombination rate and the negative correlation with the density of conserved sequences suggest that selection at linked sites also affect levels of diversity. This is supported by the observation that the ratio of the number of nonsynonymous to noncoding polymorphisms is negatively correlated to a measure of the effective population size across the genome. We show these patterns persist even when we restrict our analysis to GC-conservative mutations, demonstrating that the patterns are not driven by GC biased gene conversion. In conclusion, our comparative analyses describe how recombination rate, gene density, and mutation rate interact to produce the patterns of DNA diversity that we observe along the hominine genomes.


Author(s):  
Jacek Majewski

Eukaryotic genes have the ability to produce several distinct products from a single genomic locus. Recent developments in microarray technology allow monitoring of such isoform variation at a genome-wide scale. In our research, we have used Affymetrix Exon Arrays to detect variation in alternative splicing, initiation of transcription, and polyadenylation among humans. We demonstrated that such variation is common in human populations and has an underlying genetic component. Here, we use our study to illustrate the use of Exon Arrays to detect alternative isoforms, to outline the analysis involved, and to point out potential problems that may be encountered by researchers using this technology.


2016 ◽  
Vol 283 (1835) ◽  
pp. 20160749 ◽  
Author(s):  
Tom Vogwill ◽  
Robyn L. Phillips ◽  
Danna R. Gifford ◽  
R. Craig MacLean

There is growing evidence that parallel molecular evolution is common, but its causes remain poorly understood. Demographic parameters such as population bottlenecks are predicted to be major determinants of parallelism. Here, we test the hypothesis that bottleneck intensity shapes parallel evolution by elucidating the genomic basis of adaptation to antibiotic-supplemented media in hundreds of populations of the bacterium Pseudomonas fluorescens Pf0-1. As expected, bottlenecking decreased the rate of phenotypic and molecular adaptation. Surprisingly, bottlenecking had no impact on the likelihood of parallel adaptive molecular evolution at a genome-wide scale. However, bottlenecking had a profound impact on the genes involved in antibiotic resistance. Specifically, under either intense or weak bottlenecking, resistance predominantly evolved by strongly beneficial mutations which provide high levels of antibiotic resistance. In contrast with intermediate bottlenecking regimes, resistance evolved by a greater diversity of genetic mechanisms, significantly reducing the observed levels of parallel genetic evolution. Our results demonstrate that population bottlenecking can be a major predictor of parallel evolution, but precisely how may be more complex than many simple theoretical predictions.


Genes ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 258
Author(s):  
Karim Karimi ◽  
Duy Ngoc Do ◽  
Mehdi Sargolzaei ◽  
Younes Miar

Characterizing the genetic structure and population history can facilitate the development of genomic breeding strategies for the American mink. In this study, we used the whole genome sequences of 100 mink from the Canadian Centre for Fur Animal Research (CCFAR) at the Dalhousie Faculty of Agriculture (Truro, NS, Canada) and Millbank Fur Farm (Rockwood, ON, Canada) to investigate their population structure, genetic diversity and linkage disequilibrium (LD) patterns. Analysis of molecular variance (AMOVA) indicated that the variation among color-types was significant (p < 0.001) and accounted for 18% of the total variation. The admixture analysis revealed that assuming three ancestral populations (K = 3) provided the lowest cross-validation error (0.49). The effective population size (Ne) at five generations ago was estimated to be 99 and 50 for CCFAR and Millbank Fur Farm, respectively. The LD patterns revealed that the average r2 reduced to <0.2 at genomic distances of >20 kb and >100 kb in CCFAR and Millbank Fur Farm suggesting that the density of 120,000 and 24,000 single nucleotide polymorphisms (SNP) would provide the adequate accuracy of genomic evaluation in these populations, respectively. These results indicated that accounting for admixture is critical for designing the SNP panels for genotype-phenotype association studies of American mink.


Genes ◽  
2020 ◽  
Vol 11 (10) ◽  
pp. 1154
Author(s):  
Min Jeong Hong ◽  
Jin-Baek Kim ◽  
Yong Weon Seo ◽  
Dae Yeon Kim

Genes of the F-box family play specific roles in protein degradation by post-translational modification in several biological processes, including flowering, the regulation of circadian rhythms, photomorphogenesis, seed development, leaf senescence, and hormone signaling. F-box genes have not been previously investigated on a genome-wide scale; however, the establishment of the wheat (Triticum aestivum L.) reference genome sequence enabled a genome-based examination of the F-box genes to be conducted in the present study. In total, 1796 F-box genes were detected in the wheat genome and classified into various subgroups based on their functional C-terminal domain. The F-box genes were distributed among 21 chromosomes and most showed high sequence homology with F-box genes located on the homoeologous chromosomes because of allohexaploidy in the wheat genome. Additionally, a synteny analysis of wheat F-box genes was conducted in rice and Brachypodium distachyon. Transcriptome analysis during various wheat developmental stages and expression analysis by quantitative real-time PCR revealed that some F-box genes were specifically expressed in the vegetative and/or seed developmental stages. A genome-based examination and classification of F-box genes provide an opportunity to elucidate the biological functions of F-box genes in wheat.


2014 ◽  
Vol 42 (15) ◽  
pp. 9838-9853 ◽  
Author(s):  
Saeed Kaboli ◽  
Takuya Yamakawa ◽  
Keisuke Sunada ◽  
Tao Takagaki ◽  
Yu Sasano ◽  
...  

Abstract Despite systematic approaches to mapping networks of genetic interactions in Saccharomyces cerevisiae, exploration of genetic interactions on a genome-wide scale has been limited. The S. cerevisiae haploid genome has 110 regions that are longer than 10 kb but harbor only non-essential genes. Here, we attempted to delete these regions by PCR-mediated chromosomal deletion technology (PCD), which enables chromosomal segments to be deleted by a one-step transformation. Thirty-three of the 110 regions could be deleted, but the remaining 77 regions could not. To determine whether the 77 undeletable regions are essential, we successfully converted 67 of them to mini-chromosomes marked with URA3 using PCR-mediated chromosome splitting technology and conducted a mitotic loss assay of the mini-chromosomes. Fifty-six of the 67 regions were found to be essential for cell growth, and 49 of these carried co-lethal gene pair(s) that were not previously been detected by synthetic genetic array analysis. This result implies that regions harboring only non-essential genes contain unidentified synthetic lethal combinations at an unexpectedly high frequency, revealing a novel landscape of genetic interactions in the S. cerevisiae genome. Furthermore, this study indicates that segmental deletion might be exploited for not only revealing genome function but also breeding stress-tolerant strains.


2021 ◽  
pp. gr.275750.121
Author(s):  
Debasish Sarkar ◽  
Z. Iris Zhu ◽  
Elisabeth R. Knoll ◽  
Emily Paul ◽  
David Landsman ◽  
...  

The Mediator complex is central to transcription by RNA polymerase II (Pol II) in eukaryotes. In budding yeast (Saccharomyces cerevisiae), Mediator is recruited by activators and associates with core promoter regions, where it facilitates pre-initiation complex (PIC) assembly, only transiently prior to Pol II escape. Interruption of the transcription cycle by inactivation or depletion of Kin28 inhibits Pol II escape and stabilizes this association. However, Mediator occupancy and dynamics have not been examined on a genome-wide scale in yeast grown in nonstandard conditions. Here we investigate Mediator occupancy following heat shock or CdCl2 exposure, with and without depletion of Kin28. We find that Pol II occupancy exhibits similar dependence on Mediator under normal and heat shock conditions. However, while Mediator association increases at many genes upon Kin28 depletion under standard growth conditions, little or no increase is observed at most genes upon heat shock, indicating a more stable association of Mediator after heat shock. Mediator remains associated upstream of the core promoter at genes repressed by heat shock or CdCl2 exposure whether or not Kin28 is depleted, suggesting that Mediator is recruited by activators but is unable to engage PIC components at these repressed targets. This persistent association is strongest at promoters that bind the HMGB family member Hmo1, and is reduced but not eliminated in hmo1∆ yeast. Finally, we show a reduced dependence on PIC components for Mediator occupancy at promoters after heat shock, further supporting altered dynamics or stronger engagement with activators under these conditions.


Sign in / Sign up

Export Citation Format

Share Document