Oligonucleotide Microarray and QRT-PCR Study of Adhesion Protein Gene Expression in Acute Coronary Syndrome Patients

Inflammation ◽  
2010 ◽  
Vol 33 (6) ◽  
pp. 398-407 ◽  
Author(s):  
Józefa Dbek ◽  
Joanna Ligus ◽  
Justyna Szota
Author(s):  
Victoria Yu. Garbuzova ◽  
Veronika L. Gurianova ◽  
Alexandr N. Parkhomenko ◽  
Viktor E. Dosenko ◽  
Alexander V. Ataman

2016 ◽  
Vol 2016 ◽  
pp. 1-11 ◽  
Author(s):  
Yujie Zhu ◽  
Yuxin Lin ◽  
Wenying Yan ◽  
Zhandong Sun ◽  
Zhi Jiang ◽  
...  

Acute coronary syndrome (ACS) is a life-threatening disease that affects more than half a million people in United States. We currently lack molecular biomarkers to distinguish the unstable angina (UA) and acute myocardial infarction (AMI), which are the two subtypes of ACS. MicroRNAs play significant roles in biological processes and serve as good candidates for biomarkers. In this work, we collected microRNA datasets from the Gene Expression Omnibus database and identified specific microRNAs in different subtypes and universal microRNAs in all subtypes based on our novel network-based bioinformatics approach. These microRNAs were studied for ACS association by pathway enrichment analysis of their target genes. AMI and UA were associated with 27 and 26 microRNAs, respectively, nine of them were detected for both AMI and UA, and five from each subtype had been reported previously. The remaining 22 and 21 microRNAs are novel microRNA biomarkers for AMI and UA, respectively. The findings are then supported by pathway enrichment analysis of the targets of these microRNAs. These novel microRNAs deserve further validation and will be helpful for personalized ACS diagnosis.


Heart ◽  
2012 ◽  
Vol 98 (Suppl 2) ◽  
pp. E189.3-E190
Author(s):  
He Guo-ping ◽  
Hui Jing-jiao ◽  
Shen Dan-dan ◽  
He Guo-ping

2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Nur Izah Ab Razak ◽  
Nor Eliani Ezani ◽  
Norzian Ismail

The most prevalent cause of mortality and morbidity worldwide is acute coronary syndrome (ACS) and its consequences. Exposure to particulate matter (PM) from air pollution has been shown to impair both. Various plausible pathogenic mechanisms have been identified, including microRNAs (miRNAs), an epigenetic regulator for gene expression. Endogenous miRNAs, average 22-nucleotide RNAs (ribonucleic acid), regulate gene expression through mRNA cleavage or translation repression and can influence proinflammatory gene expression posttranscriptionally. However, little is known about miRNA responses to fine PM (PM2.5, PM10, ultrafine particles, black carbon, and polycyclic aromatic hydrocarbon) from air pollution and their potential contribution to cardiovascular consequences, including systemic inflammation regulation. For the past decades, microRNAs (miRNAs) have emerged as novel, prospective diagnostic and prognostic biomarkers in various illnesses, including ACS. We wanted to outline some of the most important studies in the field and address the possible utility of miRNAs in regulating particulate matter-induced ACS (PMIA) on inflammatory factors in this review.


2011 ◽  
Vol 57 (3) ◽  
pp. 16-24 ◽  
Author(s):  
VIu Harbuzova ◽  
◽  
VL Hur'ianova ◽  
OM Parkhomenko ◽  
VIe Dosenko ◽  
...  

2021 ◽  
Vol 42 (Supplement_1) ◽  
Author(s):  
T Infante ◽  
M Franzese ◽  
A Ruocco ◽  
C Schiano ◽  
O Affinito ◽  
...  

Abstract Background Acute coronary syndrome (ACS) is the most severe clinical manifestation of coronary heart disease and the leading cause of death worldwide. Purpose To perform an epigenome-wide analysis in circulating CD4+ and CD8+ T cells of ACS patients and healthy subjects (HS) enrolled in the DIANA clinical trial (NCT04371809) in order to identify differentially methylated genes (DMGs). Methods Genomic DNA was extracted from CD4+ and CD8+ T cells of all subjects and sequenced by the reduced representation bisulfite sequencing (RRBS) platform. Functional pathway analysis was performed and significant DMGs were selected for gene expression validation by qRT-PCR in ACS patients and HS. GeneMANIA was used to built a prediction gene network. Correlation analyses between molecular data and clinical variables were performed. Results In CD4+ T cells we identified 61 differentially methylated regions (DMRs) associated to 57 annotated genes of which 53% (n=32) were hyper- and 47% (n=29) were hypo-methylated in ACS patients vs HS. In CD8+ T cells we identified 613 DMRs associated to 569 annotated genes of which 28% (n=173) were hyper- and 72% (n=440) were hypo-methylated between two groups. In both cell type of ACS patients, 175 DMRs were associated to 157 annotated genes of which 41% (n=72) were hyper- and 59% (n=103) were hypo-methylated. From functional analysis, we selected the top 5 DMGs in the prevalent pathways with the highest differential of methylation values. Specifically, we considered 6 hub genes: NFATC1, TCF7, PDGFA, PRKCB, PRKCZ and ABCA1 and determined their respective expression levels by q-RT-PCR. We found a significant up-regulation of the selected genes in ACS patients vs HS (P<0.001 for all comparisons). Correlation analysis showed both common and cell specific correlation patterns. In CD4+ T cells, PDGFA promoter methylation was negatively correlated with CK-MB concentrations (r=−0.79, P=0.018). ABCA1, TCF7, PDGFA and PRKCZ gene expression was positively associated to CK-MB concentrations (r=0.75, P=0.03; r=0.760, P=0.029; r=0.72, P=0.044; r=0.74, P=0.035, respectively). Conlusions This study is the first single-base resolution map of DNA methylome by RRBS in CD4+ and CD8+ T cells, providing specific methylation signatures that could help to clarify the role of aberrant methylation in ACS pathogenesis, and provide the basis for the search of novel epigenetic-sensitive biomarkers in the prevention and early diagnosis of this pathology. FUNDunding Acknowledgement Type of funding sources: Public grant(s) – National budget only. Main funding source(s): Italian Ministry of Health;Italian Ministry of Research and University


Sign in / Sign up

Export Citation Format

Share Document