Laser Fluence Recognition Using Computationally Intelligent Pulsed Photoacoustics Within the Trace Gases Analysis

Author(s):  
M. Lukić ◽  
Ž. Ćojbašić ◽  
M. D. Rabasović ◽  
D. D. Markushev ◽  
D. M. Todorović
1996 ◽  
Vol 451 ◽  
Author(s):  
T. Shimizu ◽  
M. Murahara

ABSTRACTA Fluorocarbon resin surface was selectively modified by irradiation with a ArF laser beam through a thin layer of NaAlO2, B(OH)3, or H2O solution to give a hydrophilic property. As a result, with low fluence, the surface was most effectively modified with the NaAlO2 solution among the three solutions. However, the contact angle in this case changed by 10 degrees as the fluence changed only 1mJ/cm2. When modifying a large area of the surface, high resolution displacement could not be achieved because the laser beam was not uniform in displacing functional groups. Thus, the laser fluence was successfully made uniform by homogenizing the laser beam; the functional groups were replaced on the fluorocarbon resin surface with high resolution, which was successfully modified to be hydrophilic by distributing the laser fluence uniformly.


2021 ◽  
Vol 13 (2) ◽  
pp. 270
Author(s):  
Adrian Doicu ◽  
Dmitry S. Efremenko ◽  
Thomas Trautmann

An algorithm for the retrieval of total column amount of trace gases in a multi-dimensional atmosphere is designed. The algorithm uses (i) certain differential radiance models with internal and external closures as inversion models, (ii) the iteratively regularized Gauss–Newton method as a regularization tool, and (iii) the spherical harmonics discrete ordinate method (SHDOM) as linearized radiative transfer model. For efficiency reasons, SHDOM is equipped with a spectral acceleration approach that combines the correlated k-distribution method with the principal component analysis. The algorithm is used to retrieve the total column amount of nitrogen for two- and three-dimensional cloudy scenes. Although for three-dimensional geometries, the computational time is high, the main concepts of the algorithm are correct and the retrieval results are accurate.


2021 ◽  
Vol 13 (12) ◽  
pp. 2244
Author(s):  
Zeeshan Javed ◽  
Aimon Tanvir ◽  
Muhammad Bilal ◽  
Wenjing Su ◽  
Congzi Xia ◽  
...  

Recently, the occurrence of fog and haze over China has increased. The retrieval of trace gases from the multi-axis differential optical absorption spectroscopy (MAX-DOAS) is challenging under these conditions. In this study, various reported retrieval settings for formaldehyde (HCHO) and sulfur dioxide (SO2) are compared to evaluate the performance of these settings under different meteorological conditions (clear day, haze, and fog). The dataset from 1st December 2019 to 31st March 2020 over Nanjing, China, is used in this study. The results indicated that for HCHO, the optimal settings were in the 324.5–359 nm wavelength window with a polynomial order of five. At these settings, the fitting and root mean squared (RMS) errors for column density were considerably improved for haze and fog conditions, and the differential slant column densities (DSCDs) showed more accurate values compared to the DSCDs between 336.5 and 359 nm. For SO2, the optimal settings for retrieval were found to be at 307–328 nm with a polynomial order of five. Here, root mean square (RMS) and fitting errors were significantly lower under all conditions. The observed HCHO and SO2 vertical column densities were significantly lower on fog days compared to clear days, reflecting a decreased chemical production of HCHO and aqueous phase oxidation of SO2 in fog droplets.


2021 ◽  
Vol 127 (9) ◽  
Author(s):  
A. Feuer ◽  
R. Weber ◽  
R. Feuer ◽  
D. Brinkmeier ◽  
T. Graf

AbstractThe influence of the laser fluence on the quality of percussion-drilled holes was investigated both experimentally and by an analytical model. The study reveals that the edge quality of the drilled microholes depends on the laser fluence reaching the rear exit of the hole and changes with the number of pulses applied after breakthrough. The minimum fluence that must reach the hole’s exit in order to obtain high-quality microholes in stainless steel was experimentally found to be 2.8 times the ablation threshold.


Polymers ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 679
Author(s):  
Daniel Sola ◽  
Stephan Milles ◽  
Andrés F. Lasagni

Refractive index modification by laser micro-structuration of diffractive optical devices in ophthalmic polymers has recently been applied for refractive correction in the fields of optics and ophthalmology. In this work, Safrofilcon-A hydrogel, used as soft contact lenses, was processed by direct laser interference patterning (DLIP) to fabricate linear periodic patterns on the surface of the samples. Periodic modulation of the surface was attained under two-beam interference by using a Q-switched laser source with emission at 263 nm and 4 ns pulse duration. Features of processed areas were studied as a function of both the interference spatial period and the laser fluence. Optical confocal microscopy used to evaluate the topography of the processed samples showed that both structured height and surface roughness increased with laser fluence. Static water contact angle (WCA) measurements were carried out with deionized water droplets on the structured areas to evaluate the hydration properties of DLIP structures. It was observed that the laser structured areas induced a delay in the hydration process. Finally, microstructural changes induced in the structured areas were assessed by confocal micro-Raman spectroscopy showing that at low laser fluences the polymer structure remained almost unaltered. In addition, Raman spectra of hydrated samples recovered the original shape of areas structured at low laser fluence.


2021 ◽  
Vol 13 (11) ◽  
pp. 2098
Author(s):  
Yuanyuan Qian ◽  
Yuhan Luo ◽  
Fuqi Si ◽  
Haijin Zhou ◽  
Taiping Yang ◽  
...  

Global measurements of total ozone are necessary to evaluate ozone hole recovery above Antarctica. The Environmental Trace Gases Monitoring Instrument (EMI) onboard GaoFen 5, launched in May 2018, was developed to measure and monitor the global total ozone column (TOC) and distributions of other trace gases. In this study, some of the first global TOC results of the EMI using the differential optical absorption spectroscopy (DOAS) method and validation with ground-based TOC measurements and data derived from Ozone Monitoring Instrument (OMI) and TROPOspheric Monitoring Instrument (TROPOMI) observations are presented. Results show that monthly average EMI TOC data had a similar spatial distribution and a high correlation coefficient (R ≥ 0.99) with both OMI and TROPOMI TOC. Comparisons with ground-based measurements from the World Ozone and Ultraviolet Radiation Data Centre also revealed strong correlations (R > 0.9). Continuous zenith sky measurements from zenith scattered light differential optical absorption spectroscopy instruments in Antarctica were also used for validation (R = 0.9). The EMI-derived observations were able to account for the rapid change in TOC associated with the sudden stratospheric warming event in October 2019; monthly average TOC in October 2019 was 45% higher compared to October 2018. These results indicate that EMI TOC derived using the DOAS method is reliable and has the potential to be used for global TOC monitoring.


Materials ◽  
2020 ◽  
Vol 13 (17) ◽  
pp. 3816
Author(s):  
Haidong He ◽  
Risheng Hua ◽  
Xuan Li ◽  
Chunju Wang ◽  
Xuezhong Ning ◽  
...  

Laser irradiation is a popular method to produce microtextures on metal surfaces. However, the common laser-produced microtextures were hierarchical (multiscale), which may limit their applicability. In this paper, a method of two-step laser irradiation, combining first-step strong ablation and sequentially second-step gentle ablation, was presented to produce micron-rough surface with single-scale microtextures. The effect of laser fluence on the Ti–6Al–4V surface morphology and wettability were investigated in detail. The morphology results revealed that the microtextures produced using this method gradually evolved from multiscale to single-scale meanwhile from microprotrusions to microholes with increasing the second-step laser fluence from 0.0 to 2.4 J/cm2. The wettability and EDS/XPS results indicated that attributing to the rich TiO2 content and micron roughness produced by laser irradiation, all the two-step laser-irradiated surfaces exhibited superhydrophilicity. In addition, after silanization, all these superhydrophilic surfaces immediately turned to be superhydrophobic with close water contact angles of 155–162°. However, due to the absence of nanotextures, the water-rolling angle on the superhydrophobic surfaces with single-scale microtextures distinctly larger than those with multiscale ones. Finally, using the two-step laser-irradiation method and assisted with silanization, multifunctional superhydrophobic Ti–6Al–4V surfaces were achieved, including self-cleaning, guiding of the water-rolling direction and anisotropic water-rolling angles (like the rice-leaf), etc.


Sign in / Sign up

Export Citation Format

Share Document