A junctionless tunnel field effect transistor with low subthreshold slope

2013 ◽  
Vol 12 (3) ◽  
pp. 428-436 ◽  
Author(s):  
Bahniman Ghosh ◽  
Punyasloka Bal ◽  
Partha Mondal
2021 ◽  
Author(s):  
Parveen Kumar ◽  
Balwinder Raj

This paper analyses the different parameters of tunnel field-effect transistor (TFET) based on silicon Nanowire in vertical nature by using a Gaussian doping profile. The device has been designed using an n-channel P+-I-N+ structure for tunneling junction of TFET with gate-all-around (GAA) Nanowire structure. The gate length has been taken as 100 nm using silicon Nanowire to obtain the various parameters such as ON-current (ION), OFF-current (IOFF), current ratio, and Subthreshold slope (SS) by applying different values of work function at the gate, the radius of Nanowire and oxide thickness of the device. The simulations are performed on Silvaco TCAD which gives a better parametric analysis over conventional tunnel field-effect transistor.


2010 ◽  
Vol E93-C (5) ◽  
pp. 540-545 ◽  
Author(s):  
Dong Seup LEE ◽  
Hong-Seon YANG ◽  
Kwon-Chil KANG ◽  
Joung-Eob LEE ◽  
Jung Han LEE ◽  
...  

2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Xiaoshi Jin ◽  
Yicheng Wang ◽  
Kailu Ma ◽  
Meile Wu ◽  
Xi Liu ◽  
...  

AbstractA bilateral gate-controlled S/D symmetric and interchangeable bidirectional tunnel field effect transistor (B-TFET) is proposed in this paper, which shows the advantage of bidirectional switching characteristics and compatibility with CMOS integrated circuits compared to the conventional asymmetrical TFET. The effects of the structural parameters, e.g., the doping concentrations of the N+ region and P+ region, length of the N+ region and length of the intrinsic region, on the device performances, e.g., the transfer characteristics, Ion–Ioff ratio and subthreshold swing, and the internal mechanism are discussed and explained in detail.


Sign in / Sign up

Export Citation Format

Share Document