Mixed CNT bundles as VLSI interconnects for nanoscale technology nodes

Author(s):  
Gurleen Dhillon ◽  
Karmjit Singh Sandha
2018 ◽  
Vol 24 (8) ◽  
pp. 5975-5981
Author(s):  
A Karthikeyan ◽  
P. S Mallick

Integrated circuits (IC’s) are sized for higher performance and packing density. Interconnects are major components to carry signals between transistors. Interconnect delay increases due to increase in length of interconnect. Optimization of interconnects is more essential to improve the performance of integrated circuits. Repeater insertion is an important technique used in optimizing the performance of interconnects in integrated circuits. Repeaters have to be designed to satisfy the performance constraints. In this paper we have designed a new repeater using transistors and analyzed the performance at various bias levels. The Repeater design was implemented at various technology nodes using PTM models and Bulk CMOS. Delay and power dissipation are analyzed for various voltage levels and load levels using Spice simulations. The results show that the proposed repeater has lesser delay compared to the conventional repeater with an increase of power dissipation and they are more suitable for Critical path in VLSI interconnects. They can be applicable for CNT based VLSI interconnects.


Author(s):  
Damanpreet Kaur ◽  
V. Sulochana

<p>Crosstalk noise is often induced in long interconnects running parallel to each other .There arises a need to minimize the effect of these crosstalk noise so as to maintain the signal integrity in interconnects. So in this paper crosstalk noise is minimized using various techniques such as repeater (bidirectional buffer) insertion along with shielding, skewing and shielding &amp; skewing simultaneously. With the help of these techniques crosstalk noise is controlled to a great extent in long interconnects. Prelayout simulations for crosstalk are carried out for different techniques at 90nm technology nodes using cadence. The influences of these techniques are analyzed and it is found that crosstalk is reduced upto 57%.</p>


Author(s):  
E. Hendarto ◽  
S.L. Toh ◽  
J. Sudijono ◽  
P.K. Tan ◽  
H. Tan ◽  
...  

Abstract The scanning electron microscope (SEM) based nanoprobing technique has established itself as an indispensable failure analysis (FA) technique as technology nodes continue to shrink according to Moore's Law. Although it has its share of disadvantages, SEM-based nanoprobing is often preferred because of its advantages over other FA techniques such as focused ion beam in fault isolation. This paper presents the effectiveness of the nanoprobing technique in isolating nanoscale defects in three different cases in sub-100 nm devices: soft-fail defect caused by asymmetrical nickel silicide (NiSi) formation, hard-fail defect caused by abnormal NiSi formation leading to contact-poly short, and isolation of resistive contact in a large electrical test structure. Results suggest that the SEM based nanoprobing technique is particularly useful in identifying causes of soft-fails and plays a very important role in investigating the cause of hard-fails and improving device yield.


Author(s):  
Ranganathan Gopinath ◽  
Ravikumar Venkat Krishnan ◽  
Lua Winson ◽  
Phoa Angeline ◽  
Jin Jie

Abstract Dynamic Photon Emission Microscopy (D-PEM) is an established technique for isolating short and open failures, where photons emitted by transistors are collected by sensitive infra-red detectors while the device under test is electrically exercised with automated test equipment (ATE). Common tests, such as scan, use patterns that are generated through Automatic Test Pattern Generator (ATPG) in compressed mode. When these patterns are looped for D-PEM, it results in indeterministic states within cells during the load or unload sequences, making interpretation of emission challenging. Moreover, photons are emitted with lower probability and lesser energies for smaller technology nodes such as the FinFET. In this paper, we will discuss executing scan tests in manners that can be used to bring out emission which did not show up in conventional test loops.


Author(s):  
Erik Paul ◽  
Holger Herzog ◽  
Sören Jansen ◽  
Christian Hobert ◽  
Eckhard Langer

Abstract This paper presents an effective device-level failure analysis (FA) method which uses a high-resolution low-kV Scanning Electron Microscope (SEM) in combination with an integrated state-of-the-art nanomanipulator to locate and characterize single defects in failing CMOS devices. The presented case studies utilize several FA-techniques in combination with SEM-based nanoprobing for nanometer node technologies and demonstrate how these methods are used to investigate the root cause of IC device failures. The methodology represents a highly-efficient physical failure analysis flow for 28nm and larger technology nodes.


Author(s):  
Ramya Yeluri ◽  
Ravishankar Thirugnanasambandam ◽  
Cameron Wagner ◽  
Jonathan Urtecho ◽  
Jan M. Neirynck

Abstract Laser voltage probing (LVP) has been extensively used for fault isolation over the last decade; however fault isolation in practice primarily relies on good-to-bad comparisons. In the case of complex logic failures at advanced technology nodes, understanding the components of the measured data can improve accuracy and speed of fault isolation. This work demonstrates the use of second harmonic and thermal effects of LVP to improve fault isolation with specific examples. In the first case, second harmonic frequency is used to identify duty cycle degradation. Monitoring the relative amplitude of the second harmonic helps identify minute deviations in the duty cycle with a scan over a region, as opposed to collecting multiple high resolution waveforms at each node. This can be used to identify timing degradation such as signal slope variation as well. In the second example, identifying abnormal data at the failing device as temperature dependent effect helps refine the fault isolation further.


Sign in / Sign up

Export Citation Format

Share Document