Fabrication and properties of 1–3 connectivity epoxy resin modified cement based piezoelectric composite

Author(s):  
Yan Hu ◽  
Haoran Li ◽  
Peng Liu ◽  
Dongyu Xu
2017 ◽  
Vol 15 (1_suppl) ◽  
pp. 38-44 ◽  
Author(s):  
Chao Zhong ◽  
Likun Wang ◽  
Lei Qin ◽  
Yanjun Zhang

Introduction To increase electromechanical coupling factor of 1-3 piezoelectric composite and reduce its bending deformation under external stress, an improved 1-3 piezoelectric composite is developed. In the improved structure, both epoxy resin and silicone rubber are used as polymer material. Methods The simulation model of the improved 1-3 piezoelectric composite was established using the finite element software ANSYS. The relationship of the performance of the improved composite to the volume percentage of silicone rubber was determined by harmonic response analysis and the bending deformation under external stress was simulated by static analysis. The improved composite samples were prepared by cutting and filling methods, and the performance was tested. Results The feasibility of the improved structure was verified by finite element simulation and experiment. The electromechanical coupling factor of the improved composite can reach 0.67 and meanwhile the characteristic impedance can decline to 13 MRayl. The electromechanical coupling factor of the improved composite is higher than that of the composite with only epoxy resin as the polymer and the improved composite can reduce bending deformation. Discussion Comparison of simulation and experiment, the results of the experiment are in general agreement with those from the simulation. However, most experimental values were higher than the simulation results, and the abnormality of the test results was also more obvious than that of the simulation. These findings may be attributed to slight difference in the material parameters of simulation and experiment.


2014 ◽  
Vol 575 ◽  
pp. 580-584
Author(s):  
Xin Chun Xie ◽  
Jin Sen Zhang ◽  
Dong Yu Xu ◽  
Xiao Jing Guo ◽  
Fei Sha ◽  
...  

This paper described fabrication and comparison of embedded ultrasonic sensors for NDE applications. A 1-3 cement-based piezoelectric composite was used as the sensing element of the ultrasonic sensor. As a front matching layer between test material and piezoelectric materials, cement/epoxy resin was selected. In order to make the backing materials for sensors had enough acoustic attenuation performance, the backing material of sensors doped with tungsten powder. When the mass ratio of tungsten/cement backing was two and the thickness of cement/epoxy resin front-face matching was 3mm, the 1-3 cement-based piezoelectric ultrasonic sensor showed a significant enhancement in both relative pulse-echo sensitivity and-6dB bandwidth. These promising results suggested the great potential for developing high-performance ultrasonic sensors using the 1-3 cement-based piezoelectric composite.


2011 ◽  
Vol 306-307 ◽  
pp. 839-843 ◽  
Author(s):  
Dong Yu Xu ◽  
Lei Qin ◽  
Shi Feng Huang ◽  
Xin Cheng

1-3 type cement/epoxy resin based piezoelectric composite was designed and fabricated aiming at providing a new method for cement hydration monitoring. Combining with piezoelectric impedance technology, the cement hydration reaction process was monitored by using the composite. The research results show that in the initial cement hydration period, the resistance-frequency curves of the sensor drift toward low frequency direction, while the anti-resonance resistance value decreases gradually. With increasing cement hydration time, the resistance-frequency curves of the sensor drift toward high frequency direction and the anti-resonance resistance value shows fluctuation changes. The cement hydration reaction process can be divided into different periods according to changes of anti-resonance frequency and anti-resonance resistance value of the sensor.


Author(s):  
D. J. McComb ◽  
J. Beri ◽  
F. Zak ◽  
K. Kovacs

Gonadotroph cell adenomas of the pituitary are infrequent in human patients and are not invariably associated with altered gonadal function. To date, no animal model of this tumor type exists. Herein, we describe spontaneous gonadotroph cell adenomas in old male and female Sprague-Dawley rats by histology, immunocytology and electron microscopy.The material consisted of the pituitaries of 27 male and 38 female Sprague Dawley rats, all 26 months of age or older, removed at routine autopsy. Sections of formal in-fixed, paraffin-embedded tissue were stained with hematoxylin-phloxine-saffron (HPS), the PAS method and the Gordon-Sweet technique for the demonstration of reticulin fibers. For immunostaining, sections were exposed to anti-rat β-LH, anti-ratβ-TSH, anti-rat PRL, anti-rat GH and anti-rat ACTH 1-39. For electron microscopy, tissue was fixed in 2.5% glutaraldehyde, postfixed in 1% OsO4 and embedded in epoxy-resin. Tissue fixed in 10% formalin, embedded in epoxy resin without osmification, was used for immunoelectron microscopy.


Author(s):  
J. Temple Black ◽  
William G. Boldosser

Ultramicrotomy produces plastic deformation in the surfaces of microtomed TEM specimens which can not generally be observed unless special preparations are made. In this study, a typical biological composite of tissue (infundibular thoracic attachment) infiltrated in the normal manner with an embedding epoxy resin (Epon 812 in a 60/40 mixture) was microtomed with glass and diamond knives, both with 45 degree body angle. Sectioning was done in Portor Blum Mt-2 and Mt-1 microtomes. Sections were collected on formvar coated grids so that both the top side and the bottom side of the sections could be examined. Sections were then placed in a vacuum evaporator and self-shadowed with carbon. Some were chromium shadowed at a 30 degree angle. The sections were then examined in a Phillips 300 TEM at 60kv.Carbon coating (C) or carbon coating with chrom shadowing (C-Ch) makes in effect, single stage replicas of the surfaces of the sections and thus allows the damage in the surfaces to be observable in the TEM. Figure 1 (see key to figures) shows the bottom side of a diamond knife section, carbon self-shadowed and chrom shadowed perpendicular to the cutting direction. Very fine knife marks and surface damage can be observed.


Author(s):  
J. G. Adams ◽  
M. M. Campbell ◽  
H. Thomas ◽  
J. J. Ghldonl

Since the introduction of epoxy resins as embedding material for electron microscopy, the list of new formulations and variations of widely accepted mixtures has grown rapidly. Described here is a resin system utilizing Maraglas 655, Dow D.E.R. 732, DDSA, and BDMA, which is a variation of the mixtures of Lockwood and Erlandson. In the development of the mixture, the Maraglas and the Dow resins were tested in 3 different volumetric proportions, 6:4, 7:3, and 8:2. Cutting qualities and characteristics of stability in the electron beam and image contrast were evaluated for these epoxy mixtures with anhydride (DDSA) to epoxy ratios of 0.4, 0.55, and 0.7. Each mixture was polymerized overnight at 60°C with 2% and 3% BDMA.Although the differences among the test resins were slight in terms of cutting ease, general tissue preservation, and stability in the beam, the 7:3 Maraglas to D.E.R. 732 ratio at an anhydride to epoxy ratio of 0.55 polymerized with 3% BDMA proved to be most consistent. The resulting plastic is relatively hard and somewhat brittle which necessitates trimming and facing the block slowly and cautiously to avoid chipping. Sections up to about 2 microns in thickness can be cut and stained with any of several light microscope stains and excellent quality light photomicrographs can be taken of such sections (Fig. 1).


Author(s):  
C. F. Oster

Although ultra-thin sectioning techniques are widely used in the biological sciences, their applications are somewhat less popular but very useful in industrial applications. This presentation will review several specific applications where ultra-thin sectioning techniques have proven invaluable.The preparation of samples for sectioning usually involves embedding in an epoxy resin. Araldite 6005 Resin and Hardener are mixed so that the hardness of the embedding medium matches that of the sample to reduce any distortion of the sample during the sectioning process. No dehydration series are needed to prepare our usual samples for embedding, but some types require hardening and staining steps. The embedded samples are sectioned with either a prototype of a Porter-Blum Microtome or an LKB Ultrotome III. Both instruments are equipped with diamond knives.In the study of photographic film, the distribution of the developed silver particles through the layer is important to the image tone and/or scattering power. Also, the morphology of the developed silver is an important factor, and cross sections will show this structure.


Author(s):  
R.L. Pinto ◽  
R.M. Woollacott

The basal body and its associated rootlet are the organelles responsible for anchoring the flagellum or cilium in the cytoplasm. Structurally, the common denominators of the basal apparatus are the basal body, a basal foot from which microtubules or microfilaments emanate, and a striated rootlet. A study of the basal apparatus from cells of the epidermis of a sponge larva was initiated to provide a comparison with similar data on adult sponges.Sexually mature colonies of Aplysillasp were collected from Keehi Lagoon Marina, Honolulu, Hawaii. Larvae were fixed in 2.5% glutaraldehyde and 0.14 M NaCl in 0.2 M Millonig’s phosphate buffer (pH 7.4). Specimens were postfixed in 1% OsO4 in 1.25% sodium bicarbonate (pH 7.2) and embedded in epoxy resin. The larva ofAplysilla sp was previously described (as Dendrilla cactus) based on live observations and SEM by Woollacott and Hadfield.


1982 ◽  
Vol 43 (C9) ◽  
pp. C9-509-C9-511
Author(s):  
P. Doussineau ◽  
W. Schön

Sign in / Sign up

Export Citation Format

Share Document