Effects of annealing temperature and heating rate on microstructure, magnetic, and mechanical properties of high-Bs Fe81.7−xSi4B13NbxCu1.3 nanocrystalline alloys

2020 ◽  
Vol 56 (3) ◽  
pp. 2572-2583
Author(s):  
Yanhui Li ◽  
Guozhong Zhang ◽  
Licheng Wu ◽  
Wei Zhang
1996 ◽  
Vol 160 ◽  
pp. 133-135 ◽  
Author(s):  
X. Duan ◽  
H. Huneus ◽  
T. Kochmann ◽  
K. Leuridan ◽  
R. Kaczmarek ◽  
...  

Metals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 476
Author(s):  
Sayed Amer ◽  
Ruslan Barkov ◽  
Andrey Pozdniakov

Microstructure of Al-Cu-Yb and Al-Cu-Gd alloys at casting, hot-rolled -cold-rolled and annealed state were observed; the effect of annealing on the microstructure was studied, as were the mechanical properties and forming properties of the alloys, and the mechanism of action was explored. Analysis of the solidification process showed that the primary Al solidification is followed by the eutectic reaction. The second Al8Cu4Yb and Al8Cu4Gd phases play an important role as recrystallization inhibitor. The Al3Yb or (Al, Cu)17Yb2 phase inclusions are present in the Al-Cu-Yb alloy at the boundary between the eutectic and aluminum dendrites. The recrystallization starting temperature of the alloys is in the range of 250–350 °C after rolling with previous quenching at 590 and 605 °C for Al-Cu-Yb and Al-Cu-Gd, respectively. The hardness and tensile properties of Al-Cu-Yb and Al-Cu-Gd as-rolled alloys are reduced by increasing the annealing temperature and time. The as-rolled alloys have high mechanical properties: YS = 303 MPa, UTS = 327 MPa and El. = 3.2% for Al-Cu-Yb alloy, while YS = 290 MPa, UTS = 315 MPa and El. = 2.1% for Al-Cu-Gd alloy.


Materials ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 1024
Author(s):  
Jingjing Peng ◽  
Changshan Hao ◽  
Hongyan Liu ◽  
Yue Yan

Highly transparent indium-free multilayers of TiO2/Cu/TiO2 were obtained by means of annealing. The effects of Cu thickness and annealing temperature on the electrical and optical properties were investigated. The critical thickness of Cu mid-layer with optimal electrical and optical properties was 10 nm, with the figure of merit reaching as high as 5 × 10−3 Ω−1. Partial crystallization of the TiO2 layer enhanced the electrical and optical properties upon annealing. Electrothermal experiments showed that temperatures of more than 100 °C can be reached at a heating rate of 2 °C/s without any damage to the multilayers. The experimental results indicate that reliable transparent TiO2/Cu/TiO2 multilayers can be used for electrothermal application.


Metals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1097
Author(s):  
Umer Masood Chaudry ◽  
Seung-Chang Han ◽  
Fathia Alkelae ◽  
Tea-Sung Jun

In the present study, the effect of post-weld heat treatment (PWHT) on the microstructure and mechanical properties of friction stir welded (FSW) DP780 steel sheets was investigated. FSW was carried out at a constant tool rotation speed of 400 rpm and different welding speeds (200 mm/min and 400 min/min). A defect free weld was witnessed for both of the welding conditions. The mutual effect of severe plastic deformation and frictional heat generation by pin rotation during the FSW process resulted in grain refinement due to dynamic recrystallization in the stir zone (SZ) and thermo-mechanically affected zone (TMAZ). Lower tensile elongation and higher yield and ultimate tensile strengths were recorded for welded-samples as compared to the base material (BM) DP780 steel. The joints were subsequently annealed at various temperatures at 450–650 °C for 1 h. At higher annealing temperature, the work hardening rate of joints gradually decreased and subsequently failed in the softened heat-affected zone (HAZ) during the uniaxial tensile test. Reduction in yield strength and tensile strength was found in all PWHT conditions, though improvement in elongation was achieved by annealing at 550 °C. The digital image correlation analysis showed that an inhomogeneous strain distribution occurred in the FSWed samples, and the strain was particularly highly localized in the advancing side of interface zone. The nanoindentation measurements covering the FSWed joint were consistent with an increase of the annealing temperature. The various grains size in the BM, TMAZ, and SZ is the main factor monitoring the hardness distribution in these zones and the observed discrepancies in mechanical properties.


1997 ◽  
Vol 12 (4) ◽  
pp. 1091-1101 ◽  
Author(s):  
Seunggu Kang ◽  
Hongy Lin ◽  
Delbert E. Day ◽  
James O. Stoffer

The dependence of the optical and mechanical properties of optically transparent polymethyl methacrylate (PMMA) composites on the annealing temperature of BK10 glass fibers was investigated. Annealing was used to modify the refractive index (R.I.) of the glass fiber so that it would more closely match that of PMMA. Annealing increased the refractive index of the fibers and narrowed the distribution of refractive index of the fibers, but lowered their mechanical strength so the mechanical properties of composites reinforced with annealed fibers were not as good as for composites containing as-pulled (chilled) glass fibers. The refractive index of as-pulled 17.1 μm diameter fibers (R.I. = 1.4907) increased to 1.4918 and 1.4948 after annealing at 350 °C to 500 °C for 1 h or 0.5 h, respectively. The refractive index of glass fibers annealed at 400 °C/1 h best matched that of PMMA at 589.3 nm and 25 °C, so the composite reinforced with those fibers had the highest optical transmission. Because annealed glass fibers had a more uniform refractive index than unannealed fibers, the composites made with annealed fibers had a higher optical transmission. The mechanical strength of annealed fiber/PMMA composites decreased as the fiber annealing temperature increased. A composite containing fibers annealed at 450 °C/1 h had a tensile strength 26% lower than that of a composite made with as-pulled fibers, but 73% higher than that for unreinforced PMMA. This decrease was avoided by treating annealed fibers with HF. Composites made with annealed and HF (10 vol. %)-treated (for 30 s) glass fibers had a tensile strength (∼200 MPa) equivalent to that of the composites made with as-pulled fibers. However, as the treatment time in HF increased, the tensile strength of the composites decreased because of a significant reduction in diameter of the glass fiber which reduced the volume percent fiber in the composite.


2010 ◽  
Vol 168-170 ◽  
pp. 564-569
Author(s):  
Guang Lin Yuan ◽  
Jing Wei Zhang ◽  
Jian Wen Chen ◽  
Dan Yu Zhu

This paper makes an experimental study of mechanical properties of high-strength pumpcrete under fire, and the effects of heating rate, heating temperature and cooling mode on the residual compressive strength(RCS) of high-strength pumpcrete are investigated. The results show that under air cooling, the strength deterioration speed of high-strength concrete after high temperature increases with the increase of concrete strength grade. Also, the higher heating temperature is, the lower residual compressive strength value is. At the same heating rate (10°C/min), the residual compressive strength of C45 concrete after water cooling is a little higher than that after air cooling; but the test results are just the opposite for C55 and C65 concrete. The strength deterioration speed of high-strength concrete after high temperature increases with the increase of heating rate, but not in proportion. And when the heating temperature rises up between 200°C and 500°C, heating rate has the most remarkable effect on the residual compressive strength of concrete. These test results provide scientific proofs for further evaluation and analysis of mechanical properties of reinforced-concrete after exposure to high temperatures.


Sign in / Sign up

Export Citation Format

Share Document