scholarly journals High-Sensitive Sensor of Dopamine Based on Photoluminescence Quenching of Hierarchical CdS Spherical Aggregates

2012 ◽  
Vol 2012 ◽  
pp. 1-6 ◽  
Author(s):  
Binjie Sun ◽  
Changzheng Wang

Hierarchical CdS spherical aggregates have been fabricated by an assembling strategy starting from nanoparticles, which opens a general way to obtain hierarchical spherical aggregates of different types of materials. The hierarchical CdS spherical aggregates are of high porosity and high surface area, which give rise to unique photoluminescence properties. The desirable properties we report here will spur further developments of novel dopamine photoluminescence sensors based on the high surface area hierarchical CdS spherical aggregates fabricated with our unique assembling strategy. The novel dopamine photoluminescence sensor has a low detection limit of1.0×10−8 M, which is much lower than those reported previously.

2015 ◽  
Vol 51 (11) ◽  
pp. 2134-2137 ◽  
Author(s):  
Dongfei Sun ◽  
Juan Yang ◽  
Xingbin Yan

The novel hierarchically porous and nitrogen, sulfur-codoped graphene-like microspheres are constructed as the anode material for lithium ion batteries. High surface area and efficient heteroatom doping provide high capacity and enhanced cycling stability.


Carbon ◽  
2013 ◽  
Vol 55 ◽  
pp. 291-298 ◽  
Author(s):  
Paul A. Goodman ◽  
H. Li ◽  
Y. Gao ◽  
Y.F. Lu ◽  
J.D. Stenger-Smith ◽  
...  

2021 ◽  
Vol 7 (2) ◽  
pp. 15-19
Author(s):  
S. M. Yusof ◽  
L. P. Teh

In recent years, there has been growing interest in adsorbents with high surface area, high porosity, high stability and high selectivity for CO2 adsorption. By the incorporation of the additive on the supports such as zeolite, silica, and carbon, the physicochemical properties of the adsorbent and CO2 adsorption performance can be enhanced. In this review, we focus on the overview of bifunctional materials (BFMs) for CO2 adsorption. The findings of this study suggests that the high surface area and high porosity of the support provide a good medium for high dispersion and accessibility of additives (amine or metal oxide), enhancing the CO2 adsorption efficiency. The excessive additive however may lead to a decrease of CO2 adsorption performance due to pore blockage and the decrease of active sites for CO2 interactions. The synergistic relationship of the supporting material and additive is significant towards the enhancement of CO2 adsorption.


2020 ◽  
Vol 56 (1) ◽  
pp. 66-69 ◽  
Author(s):  
Bin Wang ◽  
Xiu-Liang Lv ◽  
Jie Lv ◽  
Li Ma ◽  
Rui-Biao Lin ◽  
...  

A highly chemically and thermally stable mesoporous hydrogen-bonded organic framework with a high surface area and a large pore volume has been rationally designed and constructed.


The Analyst ◽  
2021 ◽  
Author(s):  
Qiaoyan Li ◽  
Zhengtao Li ◽  
Yuanyuan Fu ◽  
Igor Clarot ◽  
Ariane Boudier ◽  
...  

Covalent organic frameworks (COFs) is a class of porous materials with high surface area, high porosity, good stability and tunable structure that have been neatly used in the separation area....


Nanomaterials ◽  
2018 ◽  
Vol 8 (9) ◽  
pp. 636 ◽  
Author(s):  
Tao Zhang ◽  
Isis Souza ◽  
Jiahe Xu ◽  
Vitor Almeida ◽  
Tewodros Asefa

A series of mesoporous graphitic carbon nitride (mpg-C3N4) materials are synthesized by directly pyrolyzing melamine containing many embedded silica nanoparticles templates, and then etching the silica templates from the carbonized products. The mass ratio of melamine-to-silica templates and the size of the silica nanoparticles are found to dictate whether or not mpg-C3N4 with large surface area and high porosity form. The surfaces of the mpg-C3N4 materials are then decorated with copper (Cu) nanoparticles, resulting in Cu-decorated mpg-C3N4 composite materials that show excellent photocatalytic activity for degradation of tartrazine yellow dye. The materials’ excellent photocatalytic performance is attributed to their high surface area and the synergistic effects created in them by mpg-C3N4 and Cu nanoparticles, including the Cu nanoparticles’ greater ability to separate photogenerated charge carriers from mpg-C3N4.


Lab on a Chip ◽  
2016 ◽  
Vol 16 (2) ◽  
pp. 298-304 ◽  
Author(s):  
Jonas Hansson ◽  
Hiroki Yasuga ◽  
Tommy Haraldsson ◽  
Wouter van der Wijngaart

Synthetic Microfluidic Paper – a novel porous material providing high surface area, repeatable capillary flow rates, and covalent surface chemistry.


2013 ◽  
Vol 858 ◽  
pp. 190-198 ◽  
Author(s):  
Nur Farahiyah Mohammad ◽  
Radzali Othman ◽  
Fei Yee Yeoh

Incorporated with pore sizes of 2-50 nm, CHA was found to be a promising drug delivery agent for disease treatment and could be a carrier for different types of proteins. A desired drug delivery system should consist of an ordered pore network, optimum pore size, and volume, as well as a high surface area, to allow a high drug adsorption rate, controllable drug loading, and release. However, until now, most results are still not up to expectation; since the BET surface area and pore volume obtained has been rather low, compared to the existing mesoporous silica. The objective of this work was to investigate the effect of surfactant washing on the pore characteristics and the importance of this step in the synthesis process of mesoporous carbonated hydroxyapatite (CHA). In this study, mesostructured CHA particles were prepared, via a self-assembly mechanism, between CHA and non-ionic surfactant (P123), using the co-precipitation synthesis method. The synthesized mesoporous CHA samples were washed five times using different types of solvents for surfactant removal. A sphere-like particle shape of CHA was observed under SEM for all samples; regardless of the type of solvent used. The formation of CHA was confirmed by FTIR analysis, where the carbonate ion peaks were observed in the spectrums. It was found that the mesoporous CHA with a high surface area was synthesized when high polarity solvents were used during surfactant washing. These results imply that high surface area mesoporous CHA can be obtained through surfactant washing, without applying calcination for surfactant removal, which may change the structure of the CHA during heat treatment.


Sign in / Sign up

Export Citation Format

Share Document