scholarly journals Antiviral T-Cell Frequencies in a Healthy Population: Reference Values for Evaluating Antiviral Immune Cell Profiles in Immunocompromised Patients

Author(s):  
Friederike C. Schulze Lammers ◽  
Agnes Bonifacius ◽  
Sabine Tischer-Zimmermann ◽  
Lilia Goudeva ◽  
Jörg Martens ◽  
...  

Abstract Viral infections and reactivations are major causes of morbidity and mortality after hematopoietic stem cell (HSCT) and solid organ transplantation (SOT) as well as in patients with immunodeficiencies. Latent herpesviruses (e.g., cytomegalovirus, Epstein-Barr virus, and human herpesvirus 6), lytic viruses (e.g., adenovirus), and polyomaviruses (e.g., BK virus, JC virus) can cause severe complications. Antiviral drugs form the mainstay of treatment for viral infections and reactivations after transplantation, but they have side effects and cannot achieve complete viral clearance without prior reconstitution of functional antiviral T-cell immunity. The aim of this study was to establish normal ranges for virus-specific T-cell (VST) frequencies in healthy donors. Such data are needed for better interpretation of VST frequencies observed in immunocompromised patients. Therefore, we measured the frequencies of VSTs against 23 viral protein-derived peptide pools from 11 clinically relevant human viruses in blood from healthy donors (n = 151). Specifically, we determined the VST frequencies by interferon-gamma enzyme-linked immunospot assay and classified their distribution according to age and gender to allow for a more specific evaluation and prediction of antiviral immune responses. The reference values established here provide an invaluable tool for immune response evaluation, intensity of therapeutic drugs and treatment decision-making in immunosuppressed patients. This data should make an important contribution to improving the assessment of immune responses in immunocompromised patients.

2020 ◽  
Vol 33 (4) ◽  
Author(s):  
Marie-Céline Zanella ◽  
Samuel Cordey ◽  
Laurent Kaiser

SUMMARY Viral primary infections and reactivations are common complications in patients after solid organ transplantation (SOT) and hematopoietic stem cell transplantation (HSCT) and are associated with high morbidity and mortality. Among these patients, viral infections are frequently associated with viremia. Beyond the usual well-known viruses that are part of the routine clinical management of transplant recipients, numerous other viral signatures or genomes can be identified in the blood of these patients. The identification of novel viral species and variants by metagenomic next-generation sequencing has opened up a new field of investigation and new paradigms. Thus, there is a need to thoroughly describe the state of knowledge in this field with a review of all viral infections that should be scrutinized in high-risk populations. Here, we review the eukaryotic DNA and RNA viruses identified in blood, plasma, or serum samples of pediatric and adult SOT/HSCT recipients and the prevalence of their detection, with a particular focus on recently identified viruses and those for which their potential association with disease remains to be investigated, such as members of the Polyomaviridae, Anelloviridae, Flaviviridae, and Astroviridae families. Current knowledge of the clinical significance of these viral infections with associated viremia among transplant recipients is also discussed. To ensure a comprehensive description in these two populations, individuals described as healthy (mostly blood donors) are considered for comparative purposes. The list of viruses that should be on the clinicians’ radar is certainly incomplete and will expand, but the challenge is to identify those of possible clinical significance.


2020 ◽  
Author(s):  
Daniel Peltier ◽  
Molly Radosevich ◽  
Guoqing Hou ◽  
Cynthia Zajac ◽  
Katherine Oravecz-Wilson ◽  
...  

ABSTRACTMechanisms governing allogeneic T-cell responses after allogeneic hematopoietic stem cell (HSC) and solid organ transplantation are incompletely understood. Long non-coding RNAs (lncRNA) do not code for, but control gene expression with tissue specificity. However, their role in T-cell alloimmunity is unknown. We performed RNA-seq on donor T-cells from HSCT patients and found that increasing strength of allogeneic stimulation caused greater differential expression of lncRNAs. The differential expression was validated in an independent patient cohort, and also following ex vivo allogeneic stimulation of healthy human T-cells. Linc00402, a novel, conserved lncRNA, was identified as the most differentially expressed and was enriched 88 fold in human T-cells. Mechanistically, it was mainly located in the cytoplasm, and its expression was rapidly reduced following T-cell activation. Consistent with this, tacrolimus preserved the expression of Linc00402 following T-cell activation, and lower levels of Linc00402 were found in patients who subsequently went on to develop acute graft versus host disease (GVHD). The dysregulated expression of Linc00402 was also validated in murine T-cells, both in vitro and in vivo. Functional studies using multiple modalities to deplete Linc00402 in both mouse and human T-cells, demonstrated a critical role for Linc00402 in the T-cell proliferative response to an allogeneic stimulus but not a non-specific anti-CD3/CD28 stimulus. Thus, our studies identified Linc00402 as a novel, conserved regulator of allogeneic T-cell function. Because of its T-cell specific expression and its impact on allogeneic T-cell responses, targeting Linc00402 may improve outcomes after allogeneic HSC and solid organ transplantation.One sentence summaryLncRNAs are differentially expressed by allogeneic antigen-stimulated T-cells, and the novel lncRNA, Linc00402, is a specific regulator of mouse and human allogeneic T-cells.


Author(s):  
Peter Bergman ◽  
Ola Blennow ◽  
Lotta Hansson ◽  
Stephan Mielke ◽  
Piotr Nowak ◽  
...  

AbstractBackgroundPatients with immunocompromised disorders have mainly been excluded from clinical trials of vaccination against COVID-19. Thus, the aim of this prospective clinical trial was to investigate the safety and efficacy after two doses of BNT162b2 mRNA vaccination in five selected groups of immunocompromised patients and healthy controls.Methods539 study subjects (449 patients and 90 controls) were included in the clinical trial. The patients had either primary (n=90), or secondary immunodeficiency disorders due to human immunodeficiency virus infection (n=90), allogeneic hematopoietic stem cell transplantation/chimeric antigen receptor T cell therapy (n=90), solid organ transplantation (SOT) (n=89), or chronic lymphocytic leukemia (CLL) (n=90). The primary endpoint was seroconversion rate two weeks after the second dose. The secondary endpoints were safety and documented SARS-CoV-2 infection.FindingsAdverse events were generally mild, but one case of fatal suspected unexpected serious adverse reaction occurred. 72·2% of the immunocompromised patients seroconverted compared to 100% of the controls (p=0.004). Lowest seroconversion rates were found in the SOT (43·4%) and CLL (63·3%) patient groups with observed negative impact of treatment with mycophenolate mofetil and ibrutinib, respectively.InterpretationThe results showed that the mRNA BNT162b2 vaccine was safe in immunocompromised patients. The rate of seroconversion was substantially lower than in healthy controls, with a wide range of rates and antibody titres among predefined patient groups and subgroups. This clinical trial highlights the need for additional vaccine doses in certain immunocompromised patient groups and/or subgroups to improve immunity.FundingKnut and Alice Wallenberg Foundation, Nordstjernan AB, Region Stockholm, Swedish Research Council, Karolinska Institutet, and organizations for PID/CLL-patients in Sweden.


2017 ◽  
Vol 4 (suppl_1) ◽  
pp. S385-S385
Author(s):  
Natasha Kwendakwema ◽  
M Kyle Jensen ◽  
Andrew Pavia ◽  
Elizabeth Doby Knackstedt

Abstract Background CDI is a common cause of bacterial diarrhea, especially in immunocompromised patients. Fecal Microbiota Transplanation (FMT) has been shown to be an effective treatment for recurrent and refractory CDI. The outcomes of FMT treatment for recurrent CDI have been well described in adult populations; however, the data for immunocompromised (IC) patients especially among children are limited. We describe the experience of FMT for treatment of CDI in immuncompromised pediatric patients. Methods We collected clinical data for IC patients <21 years in our pediatric institution who had received FMT for recurrent, refractory, and/or severe CDI. IC patients included those with: solid organ transplantation (SOT) receiving immunosuppressive medications; neoplasm; hematopoietic stem cell transplantation (HSCT); inflammatory bowel disease (IBD) requiring immunosuppressive medication(s). We collected demographic and clinical data, as well as outcomes, including: resolution of diarrhea, CDI relapse, and adverse events within 3 months post-FMT. Results We performed 37 pediatric FMT for recurrent, refractory, and/or severe CDI between September 2012 and February 2017. Of these, 12 were immunocompromised children: 2 with SOT; 3 with neoplasm and/or HSCT; and 7 with IBD on immunosuppressive medication(s). Median age was 11.9 years old (range 3–16 years). 6 (50%) experienced resolution of diarrhea within 1 week post-FMT, and 9 (67%) were C. difficile negative within 3 months of FMT (3 patients did not have follow-up testing). None had CDI relapse within 3 months post-FMT. 3 (25%) had adverse event(s) within 3 months post-FMT, 2 of whom had SAEs: 1 had graft rejection at 2 months post-FMT which ultimately required re-transplantion and 1 had aspiration pneumonitis immediately following FMT. 4 (50%) of the IBD patients had disease remission (clinical, biologic, and/or histologic) in the 3 months post-FMT. Conclusion FMT appears to be effective and reasonably safe for recurrent CDI in immunocompromised pediatric patients. However, the small numbers limit conclusions, especially about safety. Larger multicenter studies are needed to precisely determine safety and efficacy in this specialized population. Disclosures All authors: No reported disclosures.


2021 ◽  
Vol 12 ◽  
Author(s):  
Alexander Höttler ◽  
Léo März ◽  
Maren Lübke ◽  
Hans-Georg Rammensee ◽  
Stefan Stevanović

Reactivation of Human Cytomegalovirus (HCMV) and Human Adenovirus (HAdV) in immunocompromised patients following stem cell transplantation (SCT) or solid organ transplantation (SOT) is associated with high morbidity and mortality. The adoptive transfer of virus-specific CD8+ and CD4+ T cells has been shown to re-establish the antiviral T-cell response and improve clinical outcome. The viral load in immunocompromised patients can efficiently be reduced solely by the infusion of virus-specific CD4+ T cells. The identification of CD4+ T-cell epitopes has mainly focused on a limited number of viral proteins that were characterized as immunodominant. Here, we used in silico prediction to determine promiscuous CD4+ T-cell epitopes from the entire proteomes of HCMV and HAdV. Immunogenicity testing with enzyme-linked immuno spot (ELISpot) assays and intracellular cytokine staining (ICS) revealed numerous novel CD4+ T-cell epitopes derived from a broad spectrum of viral antigens. We identified 17 novel HCMV-derived and seven novel HAdV-derived CD4+ T-cell epitopes that were recognized by > 50% of the assessed peripheral blood mononuclear cell (PBMC) samples. The newly identified epitopes were pooled with previously published, retested epitopes to stimulate virus-specific memory T cells in PBMCs from numerous randomly selected blood donors. Our peptide pools induced strong IFNγ secretion in 46 out of 48 (HCMV) and 31 out of 31 (HAdV) PBMC cultures. In conclusion, we applied an efficient method to screen large viral proteomes for promiscuous CD4+ T-cell epitopes to improve the detection and isolation of virus-specific T cells in a clinical setting.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 2-4
Author(s):  
Allyson M. Flower ◽  
Rachel Friedmann ◽  
Janet Ayello ◽  
Olivia Rigot ◽  
Lauren Harrison ◽  
...  

Background: Viral infection remains a major cause of morbidity and mortality after allogeneic hematopoietic stem cell transplantation (allo-HSCT) (Bollard/Heslop Blood 2016). Anti-viral agents for treatment of viral infection in immunocompromised patients are limited in efficacy and are associated with significant toxicities (Gerdemann BBMT 2004; Sili Cytother 2012). The use of virus-specific cytotoxic T-lymphocytes (VST) for immunocompromised patients with viral infections has been associated with therapeutic benefit and improved OS (Bollard/Heslop Blood 2016; Sutrave Cytother 2017). Methods of VST production include ex-vivo expansion and direct selection (Gottlieb Cytother 2017). Ex-vivo expansion requires prolonged manufacturing time, is associated with T-cell exhaustion, and results in a limited donor pool. Direct selection is rapid (12-24 hours), can be done locally, allows for expanded HLA matching, permits a low degree of HLA match to the recipient, and can be adapted for many viruses. A multicenter consortium, the Viral Cytotoxic T-Lymphocyte Consortium (VIRCTLC) was created to investigate the safety and efficacy of VST manufactured by direct selection using the IFN-g Cytokine Capture System process automated on the CliniMACS® Prodigy device (Miltenyi Biotec) for immunocompromised patients with viral infection (Figure 1). Objective: Determine the safety and efficacy of VST for the treatment of immunocompromised child, adolescent and young adult (CAYA) patients with refractory, systemic viral infection and/or viral infection and intolerance to appropriate anti-viral medical therapy. Design/Methods: CAYA patients after allo-HSCT, solid organ transplantation (SOT), or with primary immunodeficiency (PID) with refractory adenovirus (ADV), cytomegalovirus (CMV), Epstein Barr virus (EBV) or BK virus (BKV) infections as evidenced by increasing serum RT-PCR DNA (by 1 log) after 7 days or persistent quantitative RT-PCR DNA copies after 14 days of appropriate anti-viral therapy, and/or known resistance to anti-viral agents, and/or intolerance to anti-viral agents were eligible. Related donors with ≥1 HLA A, B, or DR match to recipient and with an adequate T-cell response to virus specific MACS® PepTivators were eligible. Donors were screened with viral specific antigen (PepTivator®) to predict successful VST manufacturing. Peripheral blood mononuclear cells (PBMC) were collected from eligible related donors using non-mobilized apheresis. VST were isolated using the CliniMACS® Prodigy following stimulation of PBMC with specific viral MACS PepTivator® pools, generously provided by Miltenyi Biotec. Production of CD4+ and CD8+ VST was performed as previously described (Feuchtinger Blood 2010). The target cell dose was 0.5x104 CD3+/kg for HLA mismatched haploidentical related donors and 2.5x104 CD3+/kg for matched related donors. Based on response and safety, VST were given every 2 weeks for a maximum of 5 infusions. Results: Eleven patients have been enrolled to date. Seven patients were treated for ADV, 2 for BKV, 1 for CMV, and 1 for EBV. There were 8 males and 3 females enrolled, aged 1-38 years. There were 10 patients post allo-HSCT and 1 patient post SOT. There were 8 haploidentical, related, original allo-HSCT donors and 3 haploidentical, related, third party donors. There have been no matched related donors enrolled to date. The mean±SEM %CD4+ IFN-g+ of total CD4+, %CD8+ IFN-g+ of total CD8+, and %CD3 cells recovered in the final product were 21.5±4.8, 25.0±7.0, and 50.4.2±7.2, respectively. The median number of VST infusions was 2 (1-5). The mean±SEM CD3+ cell dose was 0.49±0.001x104. Ten patients achieved complete response (PCR negative) and 1 patient achieved partial response (PCR≥1 log decrease). The overall response and complete response rates were 100% and 90.9%, respectively. The median time to maximal response was 34 days (7-141) (Table 1). No patient developed aGVHD, cGVHD, infusion reaction or CRS associated with VST. Conclusion: Preliminary results of this pilot study demonstrate that VST are safe, well tolerated and efficacious in CAYA with refractory viral infections after allo-HSCT, SOT or with PID. Manufacturing utilizing the CliniMACS® Prodigy device is rapid, reproducible and effective. Accrual is ongoing. This research is supported by FDA RO10063-01A1. Disclosures Flower: Lentigen Technology Inc/Miltenyi Biotec: Research Funding. O'Donnell:Kiadis Pharma: Other: Licensing of intellectual property. Lee:Kiadis Pharma Netherlands B.V: Consultancy, Current equity holder in publicly-traded company, Membership on an entity's Board of Directors or advisory committees, Patents & Royalties. Johnson:Cell Vault: Research Funding; Miltenyi Biotec: Research Funding. Cairo:Technology Inc/Miltenyi Biotec: Research Funding; Nektar Pharmaceuticals: Membership on an entity's Board of Directors or advisory committees, Research Funding; Miltenyi: Research Funding; Jazz Pharmaceuticals: Membership on an entity's Board of Directors or advisory committees, Research Funding, Speakers Bureau.


2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
Kirsten Geneugelijk ◽  
Kirsten Anne Thus ◽  
Eric Spierings

Human leukocyte Antigen (HLA) mismatching leads to severe complications after solid-organ transplantation and hematopoietic stem-cell transplantation. The alloreactive responses underlying the posttransplantation complications include both direct recognition of allogeneic HLA by HLA-specific alloantibodies and T cells and indirect T-cell recognition. However, the immunogenicity of HLA mismatches is highly variable; some HLA mismatches lead to severe clinical B-cell- and T-cell-mediated alloreactivity, whereas others are well tolerated. Definition of the permissibility of HLA mismatches prior to transplantation allows selection of donor-recipient combinations that will have a reduced chance to develop deleterious host-versus-graft responses after solid-organ transplantation and graft-versus-host responses after hematopoietic stem-cell transplantation. Therefore, several methods have been developed to predict permissible HLA-mismatch combinations. In this review we aim to give a comprehensive overview about the current knowledge regarding HLA-directed alloreactivity and several developedin vitroandin silicotools that aim to predict direct and indirect alloreactivity.


Sign in / Sign up

Export Citation Format

Share Document