Silver Nanoparticles and Silver Ions as Potential Antibacterial Agents

2020 ◽  
Vol 30 (12) ◽  
pp. 4811-4828 ◽  
Author(s):  
Abubaker Hamad ◽  
Khawla S. Khashan ◽  
Aseel Hadi
Materials ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4153
Author(s):  
Neli Mintcheva ◽  
Marinela Panayotova ◽  
Gospodinka Gicheva ◽  
Orlin Gemishev ◽  
Georgy Tyuliev

To broaden the application of silver nanoparticles (AgNPs), which are well-known antibacterial agents, they are supported on different substrates to prevent aggregation, increase their surface area and antibacterial efficiency, and to be separated from the system more effectively at the end of treatment. To produce nanocomposites that consist of silver nanoparticles on natural and modified zeolites, silver ions (Ag+) were loaded onto zeolite (natural, Na-modified, H-modified) and then thermally reduced to AgNPs. The effect of the exchangeable cations in zeolite on Ag+ uptake, AgNPs formation, size and morphology was investigated by the TEM, SEM, EDX, XPS, UV-vis, XRD and BET methods. The silver amount in the nanocomposites decreased in the following order Na-modified zeolite > natural zeolite > H-modified zeolite. Microscopic techniques showed formation of AgNPs of 1–14 nm on natural and Na-modified zeolite, while the diameter of metal particles on H-modified zeolite was 12–42 nm. Diffuse reflectance UV-vis and XPS methods revealed the presence of both silver ions and AgNPs in the materials indicating that partial reduction of Ag+ ions took place upon heating at 400 °C in air. Additionally, antibacterial properties of the nanocomposites were tested against Escherichia coli, and it was found that Ag–containing composites originating from the Na-modified zeolite demonstrated the highest activity.


Author(s):  
Vidyasagar G M ◽  
Shankaravva B ◽  
R Begum ◽  
Imrose ◽  
Sagar R ◽  
...  

Microorganisms like fungi, actinomycetes and bacteria are considered nanofactories and are helpful in the production of nanoparticles useful in the welfare of human beings. In the present study, we investigated the production of silver nanoparticles from Streptomyces species JF714876. Extracellular synthesis of silver nanoparticles by Streptomyces species was carried out using two different media. Silver nanoparticles were examined using UV-visible, IR and atomic force microscopy. The size of silver nanoparticles was in the range of 80-100 nm. Antimicrobial activity of silver nanoparticle against bacteria such as E. coli, S. aureus, and dermatophytes like T. rubrum and T. tonsurans was determined. Thus, this study suggests that the Streptomyces sp. JF741876 can produce silver ions that can be used as an antimicrobial substance.


2021 ◽  
pp. 1-14
Author(s):  
N.U.H. Altaf ◽  
M.Y. Naz ◽  
S. Shukrullah ◽  
H.N. Bhatti

In this study, silver nanoparticles (AgNPs) were produced through an atmospheric pressure plasma reduction reaction and tested for photodegradation of methyl blue (MB) under sunlight exposure. The argon plasma born reactive species were used to reduce silver ions to AgNPs in the solution. Glucose, fructose and sucrose were also added in the solution to stabilize the growth process. The glucose stabilized reaction produced the smallest nanoparticles of 12 nm, while sucrose stabilized reaction produced relatively larger nanoparticles (14 nm). The nanoparticles exhibited rough morphology and narrow diameter distribution regardless of stabilizer type. The narrow diameter distribution and small band gap helped activating majority of nanoparticles at a single wavelength of light spectrum. The band gap energy of AgNPs varied from 2.22 eV to 2.41 eV, depending on the saccharide type. The photoluminescence spectroscopy of AgNPs produced emission peaks at 413 nm, 415 nm, and 418 nm. The photocatalytic potential of AgNP samples was checked by degrading MB dye under sunlight. The degradation reaction reached a saturation level of 98% after 60 min of light exposure.


2021 ◽  
Vol 22 (13) ◽  
pp. 7202
Author(s):  
Tamara Bruna ◽  
Francisca Maldonado-Bravo ◽  
Paul Jara ◽  
Nelson Caro

Silver nanoparticles (AgNPs) have been imposed as an excellent antimicrobial agent being able to combat bacteria in vitro and in vivo causing infections. The antibacterial capacity of AgNPs covers Gram-negative and Gram-positive bacteria, including multidrug resistant strains. AgNPs exhibit multiple and simultaneous mechanisms of action and in combination with antibacterial agents as organic compounds or antibiotics it has shown synergistic effect against pathogens bacteria such as Escherichia coli and Staphylococcus aureus. The characteristics of silver nanoparticles make them suitable for their application in medical and healthcare products where they may treat infections or prevent them efficiently. With the urgent need for new efficient antibacterial agents, this review aims to establish factors affecting antibacterial and cytotoxic effects of silver nanoparticles, as well as to expose the advantages of using AgNPs as new antibacterial agents in combination with antibiotic, which will reduce the dosage needed and prevent secondary effects associated to both.


Materials ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1442
Author(s):  
Kumiko Yoshihara ◽  
Noriyuki Nagaoka ◽  
Aya Umeno ◽  
Akinari Sonoda ◽  
Hideki Obika ◽  
...  

Several dental materials contain silver for antibacterial effect, however the effect is relatively low. The reason for the lower antibacterial efficacy of silver is considered to be the fact that silver ions bind to chloride ions in saliva. To develop new effective silver antibacterial agents that can be useful in the mouth, we synthesized two novel amino acid (methionine or histidine)–silver complexes (Met or His–Ag) loaded with montmorillonite (Mont) and analyzed their antibacterial efficacy. At first the complexes were characterized using nuclear magnetic resonance (NMR), and amino acid–Ag complex-loaded Mont (amino acid–Ag–Mont) were characterized using X-ray diffraction (XRD) and scanning electron microscopy (SEM). The antibacterial efficacy of these materials in dental acrylic resin was then investigated by bacterial growth measurement using a spectrophotometer. As controls, commercially available silver-loaded zeolite and silver-zirconium phosphate were also tested. Dental acrylic resin incorporating His–Ag–Mont strongly inhibited Streptococcus mutans growth. This was explained by the fact that His-Ag complex revealed the highest amounts of silver ions in the presence of chloride. The structure of the amino acid–Ag complexes affected the silver ion presence in chloride and the antibacterial efficacy. His–Ag–Mont might be used as antibacterial agents for dental materials.


2021 ◽  
Vol 359 ◽  
pp. 129859
Author(s):  
Li Wang ◽  
Govindasami Periyasami ◽  
Ali Aldalbahi ◽  
Vincenzo Fogliano

2017 ◽  
Vol 137 ◽  
pp. 18-28 ◽  
Author(s):  
Petra Cvjetko ◽  
Anita Milošić ◽  
Ana-Marija Domijan ◽  
Ivana Vinković Vrček ◽  
Sonja Tolić ◽  
...  

2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
M. A. El-Sheikh

The water soluble photoinitiator (PI) 4-(trimethyl ammonium methyl) benzophenone chloride is used for the first time in the synthesis of silver nanoparticles (AgNPs). A new green synthesis method involves using PI/UV system, carboxymethyl starch (CMS), silver nitrate, and water. A mechanism of the reduction of silver ions to AgNPs by PI/UV system as well as by the newly born aldehydic groups was proposed. The synthesis process was assessed by UV-vis spectra and TEM of AgNPs colloidal solution. The highest absorbance was obtained using CMS, PI and AgNO3concentrations of 10 g/L, 1 g/L, and 1 g/L, respectively; 40°C; 60 min; pH 7; and a material : liquor ratio 1 : 20. AgNPs so-obtained were stable in aqueous solution over a period of three weeks at room temperature (~25°C) and have round shape morphology. The sizes of synthesized AgNPs were in the range of 1–21 nm and the highest counts % of these particles were for particles of 6–10 and 1–3 nm, respectively.


Sign in / Sign up

Export Citation Format

Share Document