Nonlocal Multipoint Problem with Multiple Spectrum for an Ordinary (2n)TH Order Differential Equation

2020 ◽  
Vol 246 (2) ◽  
pp. 152-169
Author(s):  
Ya. O. Baranetskij ◽  
P. I. Kalenyuk
2006 ◽  
Vol 11 (1) ◽  
pp. 13-32 ◽  
Author(s):  
B. Bandyrskii ◽  
I. Lazurchak ◽  
V. Makarov ◽  
M. Sapagovas

The paper deals with numerical methods for eigenvalue problem for the second order ordinary differential operator with variable coefficient subject to nonlocal integral condition. FD-method (functional-discrete method) is derived and analyzed for calculating of eigenvalues, particulary complex eigenvalues. The convergence of FD-method is proved. Finally numerical procedures are suggested and computational results are schown.


2007 ◽  
Vol 7 (1) ◽  
pp. 25-47 ◽  
Author(s):  
I.P. Gavrilyuk ◽  
M. Hermann ◽  
M.V. Kutniv ◽  
V.L. Makarov

Abstract The scalar boundary value problem (BVP) for a nonlinear second order differential equation on the semiaxis is considered. Under some natural assumptions it is shown that on an arbitrary finite grid there exists a unique three-point exact difference scheme (EDS), i.e., a difference scheme whose solution coincides with the projection of the exact solution of the given differential equation onto the underlying grid. A constructive method is proposed to derive from the EDS a so-called truncated difference scheme (n-TDS) of rank n, where n is a freely selectable natural number. The n-TDS is the basis for a new adaptive algorithm which has all the advantages known from the modern IVP-solvers. Numerical examples are given which illustrate the theorems presented in the paper and demonstrate the reliability of the new algorithm.


2014 ◽  
Vol 58 (1) ◽  
pp. 183-197 ◽  
Author(s):  
John R. Graef ◽  
Johnny Henderson ◽  
Rodrica Luca ◽  
Yu Tian

AbstractFor the third-order differential equationy′″ = ƒ(t, y, y′, y″), where, questions involving ‘uniqueness implies uniqueness’, ‘uniqueness implies existence’ and ‘optimal length subintervals of (a, b) on which solutions are unique’ are studied for a class of two-point boundary-value problems.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Ali Muhib ◽  
M. Motawi Khashan ◽  
Osama Moaaz

AbstractIn this paper, we study even-order DEs where we deduce new conditions for nonexistence Kneser solutions for this type of DEs. Based on the nonexistence criteria of Kneser solutions, we establish the criteria for oscillation that take into account the effect of the delay argument, where to our knowledge all the previous results neglected the effect of the delay argument, so our results improve the previous results. The effectiveness of our new criteria is illustrated by examples.


Mathematics ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 458
Author(s):  
Leobardo Hernandez-Gonzalez ◽  
Jazmin Ramirez-Hernandez ◽  
Oswaldo Ulises Juarez-Sandoval ◽  
Miguel Angel Olivares-Robles ◽  
Ramon Blanco Sanchez ◽  
...  

The electric behavior in semiconductor devices is the result of the electric carriers’ injection and evacuation in the low doping region, N-. The carrier’s dynamic is determined by the ambipolar diffusion equation (ADE), which involves the main physical phenomena in the low doping region. The ADE does not have a direct analytic solution since it is a spatio-temporal second-order differential equation. The numerical solution is the most used, but is inadequate to be integrated into commercial electric circuit simulators. In this paper, an empiric approximation is proposed as the solution of the ADE. The proposed solution was validated using the final equations that were implemented in a simulator; the results were compared with the experimental results in each phase, obtaining a similarity in the current waveforms. Finally, an advantage of the proposed methodology is that the final expressions obtained can be easily implemented in commercial simulators.


2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Yun Xin ◽  
Xiaoxiao Cui ◽  
Jie Liu

Abstract The main purpose of this paper is to obtain an exact expression of the positive periodic solution for a first-order differential equation with attractive and repulsive singularities. Moreover, we prove the existence of at least one positive periodic solution for this equation with an indefinite singularity by applications of topological degree theorem, and give the upper and lower bounds of the positive periodic solution.


1997 ◽  
Vol 4 (6) ◽  
pp. 557-566
Author(s):  
B. Půža

Abstract Sufficient conditions of solvability and unique solvability of the boundary value problem u (m)(t) = f(t, u(τ 11(t)), . . . , u(τ 1k (t)), . . . , u (m–1)(τ m1(t)), . . . . . . , u (m–1)(τ mk (t))), u(t) = 0, for t ∉ [a, b], u (i–1)(a) = 0 (i = 1, . . . , m – 1), u (m–1)(b) = 0, are established, where τ ij : [a, b] → R (i = 1, . . . , m; j = 1, . . . , k) are measurable functions and the vector function f : ]a, b[×Rkmn → Rn is measurable in the first and continuous in the last kmn arguments; moreover, this function may have nonintegrable singularities with respect to the first argument.


2021 ◽  
pp. 1-19
Author(s):  
Calogero Vetro ◽  
Dariusz Wardowski

We discuss a third-order differential equation, involving a general form of nonlinearity. We obtain results describing how suitable coefficient functions determine the asymptotic and (non-)oscillatory behavior of solutions. We use comparison technique with first-order differential equations together with the Kusano–Naito’s and Philos’ approaches.


2016 ◽  
Vol 2016 ◽  
pp. 1-12
Author(s):  
Honwah Tam ◽  
Yufeng Zhang ◽  
Xiangzhi Zhang

Applying some reduced Lie algebras of Lie symmetry operators of a Lie transformation group, we obtain an invariant of a second-order differential equation which can be generated by a Euler-Lagrange formulism. A corresponding discrete equation approximating it is given as well. Finally, we make use of the Lie algebras to generate some new integrable systems including (1+1) and (2+1) dimensions.


Sign in / Sign up

Export Citation Format

Share Document