Linear and Branched Forms of Short Antimicrobial Peptide-IRK Inhibit Growth of Multi Drug Resistant Staphylococcus aureus Isolates from Mastitic Cow Milk

Author(s):  
Purnima Gogoi ◽  
Sameer Shrivastava ◽  
Pallavi Shah ◽  
Sonal Saxena ◽  
Saumya Srivastava ◽  
...  
Peptides ◽  
2006 ◽  
Vol 27 (11) ◽  
pp. 2585-2591 ◽  
Author(s):  
Carlo P.J.M. Brouwer ◽  
Sylvia J.P. Bogaards ◽  
Marty Wulferink ◽  
Markwin P. Velders ◽  
Mick M. Welling

2020 ◽  
Vol 21 (16) ◽  
pp. 5632
Author(s):  
Jong-Kook Lee ◽  
Yoonkyung Park

Novel antibiotic drugs are urgently needed because of the increase in drug-resistant bacteria. The use of antimicrobial peptides has been suggested to replace antibiotics as they have strong antimicrobial activity and can be extracted from living organisms such as insects, marine organisms, and mammals. HPA3NT3-A2 ([Ala1,8] HPA3NT3) is an antimicrobial peptide that is an analogue of the HP (2–20) peptide derived from Helicobacter pylori ribosomal protein L1. Although this peptide was shown to have strong antimicrobial activity against drug-resistant bacteria, it also showed lower toxicity against sheep red blood cells (RBCs) and HaCaT cells compared to HPA3NT3. The l-Lys residues of HPA3NT3-A2 was substituted with d-Lys residues (HPA3NT3-A2D; [d-Lys2,5,6,9,10,15] HPA3NT3-A2) to prevent the cleavage of peptide bonds by proteolytic enzymes under physiological conditions. This peptide showed an increased half-life and maintained its antimicrobial activity in the serum against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) (pathogen). Furthermore, the antimicrobial activity of HPA3NT3-A2D was not significantly affected in the presence of mono- or divalent ions (Na+, Mg2+, Ca2+). Finally, l- or d-HPA3NT3-A2 peptides exhibited the strongest antimicrobial activity against antibiotic-resistant bacteria and failed to induce resistance in Staphylococcus aureus after 12 passages.


2018 ◽  
Vol 14 (1) ◽  
pp. 63-69 ◽  
Author(s):  
Renata Albuquerque Costa ◽  
Jeniffer Vasconcelos de Lira ◽  
Márcia Facundo Aragão

Author(s):  
Adyasa Barik ◽  
Pandiyan Rajesh ◽  
Manthiram Malathi ◽  
Vellaisamy Balasubramanian

: In recent years, over use of antibiotics has been raising its head to a serious problem all around the world as pathogens become drug resistant and create challenges to the medical field. This failure of most potent antibiotics that kill pathogens increases the thirst for research to look further way of killing pathogens. It has been led to the findings of antimicrobial peptide which is the most potent peptide to destroy pathogens. This review gives special emphasis to the usage of marine bacteria and other microorganisms for antimicrobial peptide (AMP) which are eco friendly as well as a developing class of natural and synthetic peptides with a wide spectrum of targets to pathogenic microbes. Consequently, a significant attention has been paid mainly to (i) the structure and types of anti microbial peptides and (ii) mode of action and mechanism of antimicrobial peptide resistance to pathogens. In addition to this, the designing of AMPs has been analysed thoroughly for reducing toxicity and developing better potent AMP. It has been done by the modified unnatural amino acids by amidation to target the control of biofilm and persister cell.


Antibiotics ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 126
Author(s):  
Salvatore Princiotto ◽  
Stefania Mazzini ◽  
Loana Musso ◽  
Fabio Arena ◽  
Sabrina Dallavalle ◽  
...  

The global increase in infections by multi-drug resistant (MDR) pathogens is severely impacting our ability to successfully treat common infections. Herein, we report the antibacterial activity against S. aureus and E. faecalis (including some MDR strains) of a panel of adarotene-related synthetic retinoids. In many cases, these compounds showed, together with favorable MICs, a detectable bactericidal effect. We found that the pattern of substitution on adarotene could be modulated to obtain selectivity for antibacterial over the known anticancer activity of these compounds. NMR experiments allowed us to define the interaction between adarotene and a model of microorganism membrane. Biological assessment confirmed that the scaffold of adarotene is promising for further developments of non-toxic antimicrobials active on MDR strains.


2020 ◽  
Vol 41 (S1) ◽  
pp. s40-s40
Author(s):  
Hsiu Wu ◽  
Tyler Kratzer ◽  
Liang Zhou ◽  
Minn Soe ◽  
Jonathan Edwards ◽  
...  

Background: To provide a standardized, risk-adjusted method for summarizing antimicrobial use (AU), the Centers for Disease Control and Prevention developed the standardized antimicrobial administration ratio, an observed-to-predicted use ratio in which predicted use is estimated from a statistical model accounting for patient locations and hospital characteristics. The infection burden, which could drive AU, was not available for assessment. To inform AU risk adjustment, we evaluated the relationship between the burden of drug-resistant gram-positive infections and the use of anti-MRSA agents. Methods: We analyzed data from acute-care hospitals that reported ≥10 months of hospital-wide AU and microbiologic data to the National Healthcare Safety Network (NHSN) from January 2018 through June 2019. Hospital infection burden was estimated using the prevalence of deduplicated positive cultures per 1,000 admissions. Eligible cultures included blood and lower respiratory specimens that yielded oxacillin/cefoxitin–resistant Staphylococcus aureus (SA) and ampicillin-nonsusceptible enterococci, and cerebrospinal fluid that yielded SA. The anti-MRSA use rate is the total antimicrobial days of ceftaroline, dalbavancin, daptomycin, linezolid, oritavancin, quinupristin/dalfopristin, tedizolid, telavancin, and intravenous vancomycin per 1,000 days patients were present. AU rates were modeled using negative binomial regression assessing its association with infection burden and hospital characteristics. Results: Among 182 hospitals, the median (interquartile range, IQR) of anti-MRSA use rate was 86.3 (59.9–105.0), and the median (IQR) prevalence of drug-resistant gram-positive infections was 3.4 (2.1–4.8). Higher prevalence of drug-resistant gram-positive infections was associated with higher use of anti-MRSA agents after adjusting for facility type and percentage of beds in intensive care units (Table 1). Number of hospital beds, average length of stay, and medical school affiliation were nonsignificant. Conclusions: Prevalence of drug-resistant gram-positive infections was independently associated with the use of anti-MRSA agents. Infection burden should be used for risk adjustment in predicting the use of anti-MRSA agents. To make this possible, we recommend that hospitals reporting to NHSN’s AU Option also report microbiologic culture results.Funding: NoneDisclosures: None


Sign in / Sign up

Export Citation Format

Share Document