scholarly journals Nanostructured Multilayer Composite Coatings on Ceramic Cutting Tools for Finishing Treatment of High-Hardness Quenched Steels

2016 ◽  
Vol 57 (9-10) ◽  
pp. 614-619 ◽  
Author(s):  
A. A. Vereshchaka ◽  
A. D. Batako ◽  
E. S. Sotova ◽  
A. S. Vereshchaka
2020 ◽  
Author(s):  
Sergey Grigoriev ◽  
Alexey Vereschaka ◽  
Marina Volosova ◽  
Caterina Sotova ◽  
Nikolay Sitnikov ◽  
...  

The chapter deals with the specific features concerning the application of wear-resistant coatings to improve the performance properties of ceramic cutting tools. The paper discusses the theoretical background associated with the specific operation conditions and wear of ceramic cutting tools and influencing the choice of the compositions and structures of wear-resistant coatings. The studies were focused on the application of the Ti-(Ti,Al)N-(Zr,Nb,Ti,Al)N multilayer composite coating with a nanostructured wear-resistant layer, as well as the (Cr,Al,Si)N–(DLC–Si)–DLC–(DLC–Si) and (Cr,Al,Si)N–DLC composite coatings in order to improve the cutting properties of ceramic tools. The chapter presents the results of the comparative cutting tests for the tools with the coatings under study, uncoated tools, and tools with the Ti-(Ti,Al)N commercial coating. The wear mechanisms typical for ceramic cutting tools with coatings of various compositions have been investigated.


2015 ◽  
Vol 798 ◽  
pp. 351-356 ◽  
Author(s):  
Alexey Anatolevich Vereschaka ◽  
Boris Y. Mokritskii ◽  
Dmitriy A. Pustovalov ◽  
Anatoliy Stepanovich Vereschaka ◽  
Jury I. Bublikov ◽  
...  

The study considers the challenge of improving the efficiency of end mills made of carbides through modification of physical and mechanical properties of tools by forming nanostructured multilayer composite coatings on its working surfaces with the use of filtered cathodic vacuum-arc deposition (FCVAD). The system and structure of three-component nanostructured multilayer composite modifying coatings for deposition on the working surfaces of the end mills are developed. The study presents the results of laboratory and industrial tests of end mills with coatings designed for conditions for rough and finish machining.


2016 ◽  
Vol 40 ◽  
pp. 90-98 ◽  
Author(s):  
Alexey Anatolevich Vereschaka ◽  
Anatoliy Stepanovich Vereschaka ◽  
Jury I. Bublikov ◽  
Anatoliy Y. Aksenenko ◽  
Nikolay N. Sitnikov

The structures of surface layers of the tool material, adapted to the conditions of the thermomechanical loading during the cutting process, can be formed with the use of different processing methods, the most effective of which is to deposit functional coatings on working surfaces of the cutting tool. During the studies, two nanostructured multilayer composite coatings (NMCCs) were considered: Ti-TiN-(TiCrAl)N and Zr-ZrN-(ZrNbCrAl)N. Metallographic studies were conducted, and the phase compositions of the coatings were determined by X-ray crystal analysis. The efficiency of tools made of carbide T14K8 with developed coatings was determined by comparative evaluation of tool life of a tool without coating, a tool with standard coating (TiN), and a tool with elaborated coatings (Ti-TiN-(TiCrAl)N and Zr-ZrN-(ZrNbCrAl)N) in turning structural steel 45. These tests allow noting the increase in tool life of a tool with elaborated NMCCs by up to 4 times as compared with tool life of an uncoated tool and by up to 2 times as compared with tool life of standard coating TiN. Meanwhile, NMCC of Ti-TiN-(TiCrAl) showed lifetime about 10% longer than NMCC of Zr-ZrN-(ZrNbCrAl)N). The longer lifetime of NMCC of Ti-TiN-(TiCrAl) conforms to its better adhesion characteristics and thinner nanosublayers of its wear-resistant layer.


2017 ◽  
Vol 18 (7) ◽  
pp. 707
Author(s):  
Alexey Vereschaka ◽  
Mars Migranov ◽  
Gaik Oganyan ◽  
Catherine S. Sotova ◽  
Andre Batako

Alloy Digest ◽  
1965 ◽  
Vol 14 (12) ◽  

Abstract Red Star Tungsten is a high-carbon low-alloy tool steel having high hardness, good toughness, and keen cutting edge. It is recommended for cutting tools, thread rolling dies, paper knives, etc. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties as well as deformation. It also includes information on forming, heat treating, machining, and joining. Filing Code: TS-173. Producer or source: Vanadium Alloys Steel Company.


Materials ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 951
Author(s):  
Tomáš Primus ◽  
Josef Hlavinka ◽  
Pavel Zeman ◽  
Jan Brajer ◽  
Martin Šorm ◽  
...  

The lifetime and properties of cutting tools and forming moulds can be prolonged and enhanced by the deposition of hard, thin coatings. After a certain period of usage, the coating will deteriorate. Any remaining coating must be removed prior to successful recoating. Laser stripping is a fast and environmentally friendly coating removal method. In this paper, we present laser removal of two types of coatings deposited on a 1.2379 tool steel substrate, namely, an AlTiN coating with high hardness and a DLC C coating with a small coefficient of friction (COF). A powerful nanosecond laser was employed to remove the coating from the substrate with high efficiency, along with suitable residual surface roughness. Measurements were taken of surface roughness, removed depth, and working time on a stripped area of 1 cm2. The samples were evaluated under a microscope, with a 3D profilometer, and by EDS chemical analysis. Successful removal of the coating was confirmed by optical analysis, but detailed chemical characterisation showed that about 30% of the coating element may remain on the surface. Moreover, a working time of less than 7.5 s per cm2 was obtained in this study. In addition, it was shown that the application of a second low energy, high frequency laser beam pass leads to remelting of the peaks of the material and reduced surface roughness.


2011 ◽  
Vol 674 ◽  
pp. 71-80 ◽  
Author(s):  
Jerzy Smolik ◽  
Adam Mazurkiewicz

The new hybrid technology is a combination of electron beam evaporation and arcevaporation processes, enabling the creation of the anti-erosion multilayer composite coating Ni/Cr- Cr3C2 with different volume of Cr3C2 filling in soft Ni/Cr matrix. The soft matrix made of Ni/Cr alloy and hard filling of Cr3C2 are created at the same time and directly during the electron beam and arc-evaporation process. Changes of the parameters of the hybrid process, i.e. pressure, current of arc discharge and substrate bias voltage Ubias, make it possible to control the volume of Cr3C2 and are a factor in filling the soft Cr/Ni matrix with carbides Cr3C2. With the use of the developed surface treatment hybrid technology, the multilayer composite coating Ni/Cr-Cr3C2 were obtained. For all composite layers created, the material properties, such as morphology, phase and chemical compositions, hardness, and Young modulus were investigated. The paper presents the original technological equipment, methodology, and technological parameters for the creation of the composite coating Ni/Cr-Cr3C2.


2011 ◽  
Vol 695 ◽  
pp. 417-420 ◽  
Author(s):  
Hyun Hwi Lee ◽  
Seung Ho Kim ◽  
Bhupendra Joshi ◽  
Soo Wohn Lee

Oxide ceramics such as alumina and zirconia are industrially utilized as cutting tools, a variety of bearings, biomaterials, and thermal and corrosion-resistant coatings due to their high hardness, chemical inertness, high melting point, and ability to retain mechanical strength at elevated temperatures. In this research, the effect of other ceramic additives (TiO2) and h-BN within alumina(α-Al2O3) and yttria-stabilized tetragonal (Y-TZP) composite was studied with respect to the mechanical and tribological properties. The lowest coefficient of frction of 0.45 was observed for the ZTA ceramic composite with hBN-TiO2. The highest hardness, fracture toughness and flexural strength were obtained as 15.7GPa, 5.2MPam-1/2, 712MPa, respectively.


Author(s):  
E. Lugscheider ◽  
C. Herbst-Dederichs ◽  
A. Reimann

Abstract Quasicrystalline phases improve many alloy properties such as thermomechanical stability, thermal and electrical conductivity, and tribological performance. High hardness, however, is accompanied by brittleness, an undesired property in many applications. Reduced brittleness can be achieved by embedding quasicrystalline phases in a more ductile material, forming a metal-matrix composite that retains some quasicrystalline properties. This study evaluates thermally sprayed coatings made from different compositions of such composites. The coatings assessed were produced by arc-wire, HVOF, and atmospheric plasma spraying using various forms of feed material, including blended, agglomerated, chemical encased, and attrition-milled powders and filled wires. The investigation involved metallurgical analysis, proving the existence of quasicrystal content and assessing the matrix phase, and tests showing how sliding wear is influenced by the composition of quasicrystalline phases.


Sign in / Sign up

Export Citation Format

Share Document