Experimental Chemotherapy in Paracoccidioidomycosis Using Ruthenium NO Donor

2011 ◽  
Vol 172 (2) ◽  
pp. 95-107 ◽  
Author(s):  
Wander Rogério Pavanelli ◽  
Jean Jerley Nogueira da Silva ◽  
Carolina Panis ◽  
Thiago Mattar Cunha ◽  
Ivete Conchon Costa ◽  
...  
2004 ◽  
Vol 69 (3) ◽  
pp. 499-510 ◽  
Author(s):  
Petra Beranová ◽  
Karel Chalupský ◽  
Gustav Entlicher

Nω-Hydroxy-L-arginine (NOHA) is a stable intermediate in NO formation from L-arginine catalyzed by NO synthase (NOS). Apparently, NOHA can be released and serve as a stable reserve NO donor (as a substrate of NOS) or transported and exert its own biological effects. It shows endothelium-dependent as well as endothelium-independent vasorelaxant activity. The latter case indicates that NOHA can be metabolized by pathways independent of NOS. These possibilities are discussed in detail. Of the available NOHA homologues homo-NOHA is a good substrate of NOS while nor-NOHA seems to be a very poor substrate of this enzyme. On the contrary, nor-NOHA exerts arginase inhibitory activity 20 times higher than NOHA whereas homo-NOHA is inactive. Detailed investigation of biological activities of NOHA and its homologues seems to be promising from the pharmacological point of view. A review with 43 references.


1998 ◽  
Vol 274 (3) ◽  
pp. R822-R829 ◽  
Author(s):  
Long-En Chen ◽  
Anthony V. Seaber ◽  
Rima M. Nasser ◽  
Jonathan S. Stamler ◽  
James R. Urbaniak

The ultimate goal of replantation and microsurgical reconstructive operations is to regain or improve impaired function of the tissue. However, the data related to the influence of NO on tissue function are limited. This study evaluated the effects of the NO donor S-nitroso- N-acetylcysteine (SNAC) on contractile function of skeletal muscle during reperfusion. Forty-nine rats were divided into six groups. The extensor digitorum longus (EDL) muscles in groups I and II were not subjected to ischemia-reperfusion but were treated with a low (100 nmol/min) or high (1 μmol/min) dose of SNAC. In groups III- V, the EDL underwent 3 h of ischemia and 3 h of reperfusion and was also treated with low (100 nmol/min) or high doses (1 or 5 μmol/min) of SNAC. Group VI was a phosphate-buffered saline (PBS)-treated control group. Twenty additional animals were used to document systemic effects of SNAC and PBS only. SNAC or PBS was infused for 6.5 h, beginning 30 min before ischemia and continuing throughout the duration of reperfusion. Contractile testing compared the maximal twitch force, isometric tetanic contractile forces, fatigue, and fatigue half time of the experimental EDL and the contralateral nontreated EDL. The findings indicate that 1) SNAC does not influence contractile function of EDL muscle not subjected to ischemia-reperfusion, 2) SNAC significantly protects the contractile function of ischemic skeletal muscle against reperfusion injury in the early reperfusion period, and 3) the protective role of SNAC is critically dosage dependent; protection is lost at higher doses. The conclusion from this study is that supplementation with exogenous NO exerts a protective effect on the tissue against reperfusion injury.


Neuroreport ◽  
2000 ◽  
Vol 11 (4) ◽  
pp. 765-769 ◽  
Author(s):  
Yukio Yajima ◽  
Yasumasa Hayashi ◽  
Tetsu Hayakawa

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yaarit Kutsher ◽  
Michal Fisler ◽  
Adi Faigenboim ◽  
Moshe Reuveni

AbstractIt is widely known that during the reproductive stage (flowering), plants do not root well. Most protocols of shoot regeneration in plants utilize juvenile tissue. Adding these two realities together encouraged us to study the role of florigen in shoot regeneration. Mature tobacco tissue that expresses the endogenous tobacco florigen mRNA regenerates poorly, while juvenile tissue that does not express the florigen regenerates shoots well. Inhibition of Nitric Oxide (NO) synthesis reduced shoot regeneration as well as promoted flowering and increased tobacco florigen level. In contrast, the addition of NO (by way of NO donor) to the tissue increased regeneration, delayed flowering, reduced tobacco florigen mRNA. Ectopic expression of florigen genes in tobacco or tomato decreased regeneration capacity significantly. Overexpression pear PcFT2 gene increased regeneration capacity. During regeneration, florigen mRNA was not changed. We conclude that florigen presence in mature tobacco leaves reduces roots and shoots regeneration and is the possible reason for the age-related decrease in regeneration capacity.


Amino Acids ◽  
2021 ◽  
Author(s):  
Dimitrios Tsikas

AbstractNitrosylation of sulfhydryl (SH) groups of cysteine (Cys) moieties is an important post-translational modification (PTM), often on a par with phosphorylation. S-Nitrosoalbumin (ALB-Cys34SNO; SNALB) in plasma and S-nitrosohemoglobin (Hb-Cysβ93SNO; HbSNO) in red blood cells are considered the most abundant high-molecular-mass pools of nitric oxide (NO) bioactivity in the human circulation. SNALB per se is not an NO donor. Yet, it acts as a vasodilator and an inhibitor of platelet aggregation. SNALB can be formed by nitrosation of the sole reduced Cys group of albumin (Cys34) by nitrosating species such as nitrous acid (HONO) and nitrous anhydride (N2O3), two unstable intermediates of NO autoxidation. SNALB can also be formed by the transfer (S-transnitrosylation) of the nitrosyl group (NO+) of a low-molecular-mass (LMM) S-nitrosothiol (RSNO) to ALB-Cys34SH. In the present study, the effects of LMM thiols on the inhibitory potential of ALB-Cys34SNO on human washed platelets were investigated. ALB-Cys34SNO was prepared by reacting n-butylnitrite with albumin after selective extraction from plasma of a healthy donor on HiTrapBlue Sepharose cartridges. ALB-Cys34SNO was used in platelet aggregation measurements after extended purification on HiTrapBlue Sepharose and enrichment by ultrafiltration (cutoff, 20 kDa). All tested LMM cysteinyl thiols (R-CysSH) including l-cysteine and L-homocysteine (at 10 µM) were found to mediate the collagen-induced (1 µg/mL) aggregation of human washed platelets by SNALB (range, 0–10 µM) by cGMP-dependent and cGMP-independent mechanisms. The LMM thiols themselves did not affect platelet aggregation. It is assumed that the underlying mechanism involves S-transnitrosylation of SH groups of the platelet surface by LMM RSNO formed through the reaction of SNALB with the thiols: ALB-Cys34SNO + R-CysSH ↔ ALB-Cys34SH + R-CysSNO. Such S-transnitrosylation reactions may be accompanied by release of NO finally resulting in cGMP-dependent and cGMP-independent mechanisms.


Blood Reviews ◽  
2015 ◽  
Vol 29 (2) ◽  
pp. 63-70 ◽  
Author(s):  
Stefan O. Ciurea ◽  
Ulas D. Bayraktar
Keyword(s):  

Author(s):  
Horacio E Adrogue ◽  
Andrew Evans ◽  
Dina N Murad ◽  
Hana Nguyen ◽  
Sean A Hebert ◽  
...  

Abstract Background Fibromuscular dysplasia (FMD) is a non-atherosclerotic systemic arterial disease that is not infrequently discovered during kidney donor evaluation. Current guidelines do not provide recommendations regarding the use of kidneys from donors with FMD and there is a paucity of data on the outcomes of these donors. Methods The Renal and Lung Living Donor Evaluation (RELIVE) study addressed long-term outcomes of 8922 kidney donors who donated between 1963 and 2007. We compared the development of hypertension, cardiovascular disease (CVD), proteinuria and reduced estimated glomerular filtration rate (eGFR) in 113 kidney donors with FMD discovered during donor evaluation versus 452 propensity score matched donors without FMD. Outcomes modeling with logistic and Cox regression analysis and Kaplan–Meier statistics were performed. Results Donors with FMD were older (51 versus 39 years), were more likely to be women (80% versus 56%) and had a higher systolic blood pressure at donation (124.7 versus 121.3 mmHg) (P < 0.05 for all). After a mean ± standard deviation follow-up of 15.5 ± 8.9 years, a similar proportion of donors with and without FMD were alive, and developed hypertension (22.2% versus 19.8%), proteinuria (20.6% versus 13.7%) and CVD (13.3% versus 13.5%). No donor with FMD developed an eGFR <30 mL/min/1.73 m2 or end-stage kidney disease. The multivariable risk of mortality, CVD and renal outcomes in donors with FMD was not elevated. Conclusions Kidney donors with FMD appear to do well, do not appear to incur increased risks of hypertension, proteinuria, CVD or reduced eGFR, and perhaps carefully selected candidates with FMD can safely donate as long as involvement of other vascular beds is ruled out.


2007 ◽  
Vol 98 (6) ◽  
pp. 3397-3410 ◽  
Author(s):  
Youngnam Kang ◽  
Yoshie Dempo ◽  
Atsuko Ohashi ◽  
Mitsuru Saito ◽  
Hiroki Toyoda ◽  
...  

Learning and memory are critically dependent on basal forebrain cholinergic (BFC) neuron excitability, which is modulated profoundly by leak K+ channels. Many neuromodulators closing leak K+ channels have been reported, whereas their endogenous opener remained unknown. We here demonstrate that nitric oxide (NO) can be the endogenous opener of leak K+ channels in the presumed BFC neurons. Bath application of 1 mM S-nitroso- N-acetylpenicillamine (SNAP), an NO donor, induced a long-lasting hyperpolarization, which was often interrupted by a transient depolarization. Soluble guanylyl cyclase inhibitors prevented SNAP from inducing hyperpolarization but allowed SNAP to cause depolarization, whereas bath application of 0.2 mM 8-bromoguanosine-3′,5′-cyclomonophosphate (8-Br-cGMP) induced a similar long-lasting hyperpolarization alone. These observations indicate that the SNAP-induced hyperpolarization and depolarization are mediated by the cGMP-dependent and -independent processes, respectively. When examined with the ramp command pulse applied at –70 mV under the voltage-clamp condition, 8-Br-cGMP application induced the outward current that reversed at K+ equilibrium potential ( EK) and displayed Goldman-Hodgkin-Katz rectification, indicating the involvement of voltage-independent K+ current. By contrast, SNAP application in the presumed BFC neurons either dialyzed with the GTP-free internal solution or in the presence of 10 μM Rp-8-bromo-β-phenyl-1,N2-ethenoguanosine 3′,5′-cyclic monophosphorothioate sodium salt, a protein kinase G (PKG) inhibitor, induced the inward current that reversed at potentials much more negative than EK and close to the reversal potential of Na+-K+ pump current. These observations strongly suggest that NO activates leak K+ channels through cGMP-PKG-dependent pathway to markedly decrease the excitability in BFC neurons, while NO simultaneously causes depolarization by the inhibition of Na+-K+ pump through ATP depletion.


2007 ◽  
Vol 292 (2) ◽  
pp. H893-H903 ◽  
Author(s):  
Galina N. Antonova ◽  
Connie M. Snead ◽  
Alexander S. Antonov ◽  
Christiana Dimitropoulou ◽  
Richard C. Venema ◽  
...  

Large (pathological) amounts of nitric oxide (NO) induce cell injury, whereas low (physiological) NO concentrations often ameliorate cell injury. We tested the hypotheses that pretreatment of endothelial cells with low concentrations of NO (preconditioning) would prevent injury induced by high NO concentrations. Apoptosis, induced in bovine aortic endothelial cells (BAECs) by exposing them to either 4 mM sodium nitroprusside (SNP) or 0.5 mM N-(2-aminoethyl)- N-(2-hydroxy-2-nitrosohydrazino)-1,2-ethylenediamine (spermine NONOate) for 8 h, was abolished by 24-h pretreatment with either 100 μM SNP, 10 μM spermine NONOate, or 100 μM 8-bromo-cGMP (8-Br-cGMP). Repair of BAECs following wounding, measured as the recovery rate of transendothelial electrical resistance, was delayed by 8-h exposure to 4 mM SNP, and this delay was significantly attenuated by 24-h pretreatment with 100 μM SNP. NO preconditioning produced increased association and expression of soluble guanyl cyclase (sGC) and heat shock protein 90 (HSP90). The protective effect of NO preconditioning, but not the injurious effect of 4 mM SNP, was abolished by either a sGC activity inhibitor 1H-[1,2,4]oxadiazolo-[4,3- a]quinoxalin-1-one (ODQ) or a HSP90 binding inhibitor (radicicol) and was mimicked by 8-Br-cGMP. We conclude that preconditioning with a low dose of NO donor accelerates repair and maintains endothelial integrity via a mechanism that includes the HSP90/sGC pathway. HSP90/sGC may thus play a role in the protective effects of NO-generating drugs from injurious stimuli.


1998 ◽  
Vol 274 (1) ◽  
pp. C245-C252 ◽  
Author(s):  
Junsuke Igarashi ◽  
Masashi Nishida ◽  
Shiro Hoshida ◽  
Nobushige Yamashita ◽  
Hiroaki Kosaka ◽  
...  

The effects of nitric oxide (NO) produced by cardiac inducible NO synthase (iNOS) on myocardial injury after oxidative stress were examined. Interleukin-1β induced cultured rat neonatal cardiac myocytes to express iNOS. After induction of iNOS,l-arginine enhanced NO production in a concentration-dependent manner. Glutathione peroxidase (GPX) activity in myocytes was attenuated by elevated iNOS activity and by an NO donor, S-nitroso- N-acetyl-penicillamine (SNAP). Although NO production by iNOS did not induce myocardial injury, NO augmented release of lactate dehydrogenase from myocyte cultures after addition of H2O2(0.1 mM, 1 h). Inhibition of iNOS with Nω-nitro-l-arginine methyl ester ameliorated the effects of NO-enhancing treatments on myocardial injury and GPX activity. SNAP augmented the myocardial injury induced by H2O2. Inhibition of GPX activity with antisense oligodeoxyribonucleotide for GPX mRNA increased myocardial injury by H2O2. Results suggest that the induction of cardiac iNOS promotes myocardial injury due to oxidative stress via inactivation of the intrinsic antioxidant enzyme, GPX.


Sign in / Sign up

Export Citation Format

Share Document