Mangiferin Antagonizes Rotenone: Induced Apoptosis Through Attenuating Mitochondrial Dysfunction and Oxidative Stress in SK-N-SH Neuroblastoma Cells

2014 ◽  
Vol 39 (4) ◽  
pp. 668-676 ◽  
Author(s):  
Mani Kavitha ◽  
Thamilarasan Manivasagam ◽  
Musthafa Mohamed Essa ◽  
Kuppusamy Tamilselvam ◽  
Govindasamy Pushpavathy Selvakumar ◽  
...  
2017 ◽  
Vol 2017 ◽  
pp. 1-8 ◽  
Author(s):  
Nora E. Gray ◽  
Jonathan A. Zweig ◽  
Donald G. Matthews ◽  
Maya Caruso ◽  
Joseph F. Quinn ◽  
...  

Centella asiatica has been used for centuries to enhance memory. We have previously shown that a water extract of Centella asiatica (CAW) protects against the deleterious effects of amyloid-β (Aβ) in neuroblastoma cells and attenuates Aβ-induced cognitive deficits in mice. Yet, the neuroprotective mechanism of CAW has yet to be thoroughly explored in neurons from these animals. This study investigates the effects of CAW on neuronal metabolism and oxidative stress in isolated Aβ-expressing neurons. Hippocampal neurons from amyloid precursor protein overexpressing Tg2576 mice and wild-type (WT) littermates were treated with CAW. In both genotypes, CAW increased the expression of antioxidant response genes which attenuated the Aβ-induced elevations in reactive oxygen species (ROS) and lipid peroxidation in Tg2576 neurons. CAW also improved mitochondrial function in both genotypes and increased the expression of electron transport chain enzymes and mitochondrial labeling, suggesting an increase in mitochondrial content. These data show that CAW protects against mitochondrial dysfunction and oxidative stress in Aβ-exposed hippocampal neurons which could contribute to the beneficial effects of the extract observed in vivo. Since CAW also improved mitochondrial function in the absence of Aβ, these results suggest a broader utility for other conditions where neuronal mitochondrial dysfunction occurs.


2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Rui Li ◽  
Wenzhou Liu ◽  
Li Ou ◽  
Feng Gao ◽  
Min Li ◽  
...  

Emodin is an active monomer extracted from rhubarb root, which has many biological functions, including anti-inflammation, antioxidation, anticancer, and neuroprotection. However, the protective effect of emodin on nerve injury needs to be further elucidated. The purpose of this study is to investigate the effect of emodin on the neuroprotection and the special molecular mechanism. Here, the protective activity of emodin inhibiting H2O2-induced apoptosis and neuroinflammation as well as its molecular mechanisms was examined using human neuroblastoma cells (SH-SY5Y cells). The results showed that emodin significantly enhanced cell viability, reduced cell apoptosis and LDH release. Simultaneously, emodin downregulated H2O2-induced inflammatory factors, including IL-6, NO, and TNF-α, and alleviated H2O2-induced oxidative stress and mitochondrial dysfunction in SH-SY5Y cells. In addition, emodin inhibited the activation of the PI3K/mTOR/GSK3β signaling pathway. What is more, the PI3K/mTOR/GSK3β pathway participated in the protective mechanism of emodin on H2O2-induced cell damage. Collectively, it suggests that emodin alleviates H2O2-induced apoptosis and neuroinflammation potentially by regulating the PI3K/mTOR/GSK3β signaling pathway.


2017 ◽  
Vol 32 (3) ◽  
pp. 368-380 ◽  
Author(s):  
Rebeca Alvariño ◽  
Eva Alonso ◽  
Marie-Aude Tribalat ◽  
Sandra Gegunde ◽  
Olivier P. Thomas ◽  
...  

2003 ◽  
Vol 24 (3) ◽  
pp. 333-342 ◽  
Author(s):  
Douglas C Jones ◽  
Krishnan Prabhakaran ◽  
Li Li ◽  
Palur G Gunasekar ◽  
Yan Shou ◽  
...  

PLoS ONE ◽  
2020 ◽  
Vol 15 (9) ◽  
pp. e0239625
Author(s):  
Prasanna M. Chandramouleeswaran ◽  
Manti Guha ◽  
Masataka Shimonosono ◽  
Kelly A. Whelan ◽  
Hisatsugu Maekawa ◽  
...  

2021 ◽  
Vol 22 (11) ◽  
pp. 5851
Author(s):  
Takehito Sugasawa ◽  
Seiko Ono ◽  
Masato Yonamine ◽  
Shin-ichiro Fujita ◽  
Yuki Matsumoto ◽  
...  

The prevalence of nonalcoholic fatty liver disease (NAFLD) has been rapidly increasing worldwide. A choline-deficient, L-amino acid-defined, high-fat diet (CDAHFD) has been used to create a mouse model of nonalcoholic steatohepatitis (NASH). There are some reports on the effects on mice of being fed a CDAHFD for long periods of 1 to 3 months. However, the effect of this diet over a short period is unknown. Therefore, we examined the effect of 1-week CDAHFD feeding on the mouse liver. Feeding a CDAHFD diet for only 1-week induced lipid droplet deposition in the liver with increasing activity of liver-derived enzymes in the plasma. On the other hand, it did not induce fibrosis or cirrhosis. Additionally, it was demonstrated that CDAHFD significantly impaired mitochondrial respiration with severe oxidative stress to the liver, which is associated with a decreasing mitochondrial DNA copy number and complex proteins. In the gene expression analysis of the liver, inflammatory and oxidative stress markers were significantly increased by CDAHFD. These results demonstrated that 1 week of feeding CDAHFD to mice induces steatohepatitis with mitochondrial dysfunction and severe oxidative stress, without fibrosis, which can partially mimic the early stage of NASH in humans.


Antioxidants ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 229
Author(s):  
JunHyuk Woo ◽  
Hyesun Cho ◽  
YunHee Seol ◽  
Soon Ho Kim ◽  
Chanhyeok Park ◽  
...  

The brain needs more energy than other organs in the body. Mitochondria are the generator of vital power in the living organism. Not only do mitochondria sense signals from the outside of a cell, but they also orchestrate the cascade of subcellular events by supplying adenosine-5′-triphosphate (ATP), the biochemical energy. It is known that impaired mitochondrial function and oxidative stress contribute or lead to neuronal damage and degeneration of the brain. This mini-review focuses on addressing how mitochondrial dysfunction and oxidative stress are associated with the pathogenesis of neurodegenerative disorders including Alzheimer’s disease, amyotrophic lateral sclerosis, Huntington’s disease, and Parkinson’s disease. In addition, we discuss state-of-the-art computational models of mitochondrial functions in relation to oxidative stress and neurodegeneration. Together, a better understanding of brain disease-specific mitochondrial dysfunction and oxidative stress can pave the way to developing antioxidant therapeutic strategies to ameliorate neuronal activity and prevent neurodegeneration.


2017 ◽  
Vol 32 (1) ◽  
pp. 62-69 ◽  
Author(s):  
Chao Liang ◽  
Fang Du ◽  
Jing Cang ◽  
Zhanggang Xue

Sign in / Sign up

Export Citation Format

Share Document